Advances in Chemical Physics, Volume 151, Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials

Book Details

  • Published: 08 June 2012
  • ISBN: 978-1-118-16783-0
  • Author: Gregoire Nicolis, Dominique Maes
thumbnail image: Advances in Chemical Physics, Volume 151, Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials

Purchase this Book

The Advances in Chemical Physics series—the cutting edge of research in chemical physics


The Advances in Chemical Physics
series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series presents contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.


This volume explores:

  • Kinetics and thermodynamics of fluctuation-induced transitions in multistable systems (G. Nicolis and C. Nicolis)

  • Dynamical rare event simulation techniques for equilibrium and nonequilibrium systems (Titus S. van Erp)

  • Confocal depolarized dynamic light scattering (M. Potenza, T. Sanvito, V. Degiorgio, and M. Giglio)

  • The two-step mechanism and the solution-crystal spinodal for nucleation of crystals in solution (Peter G. Vekilov)

  • Experimental studies of two-step nucleation during two-dimensional crystallization of colloidal particles with short-range attraction (John R. Savage, Liquan Pei, and Anthony D. Dinsmore)

  • On the role of metastable intermediate states in the homogeneous nucleation of solids from solution (James F. Lutsko)

  • Effects of protein size on the high-concentration/low-concentration phase transition (Patrick Grosfils)

  • Geometric constraints in the self-assembly of mineral dendrites and platelets (John J. Kozak)

  • What can mesoscopic level in situ observations teach us about kinetics and thermodynamics of protein crystallization? (Mike Sleutel, Dominique Maes, and Alexander Van Driessche)

  • The ability of silica to induce biomimetic crystallization of calcium carbonate (Matthias Kellermeier, Emilio Melero-GarcÍa, Werner Kunz, and Juan Manuel GarcÍa-Ruiz)


Online book available at http://onlinelibrary.wiley.com/book/10.1002/9781118309513

Article Views: 908

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH