Low-Bandgap Polymers Based on Hexaphenylbenzenes

  • ChemPubSoc Europe Logo
  • Author: Andrei Dragan
  • Published Date: 24 November 2017
  • Source / Publisher: Chemistry – An Asian Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Low-Bandgap Polymers Based on Hexaphenylbenzenes

Low-bandgap conjugated polymers have unique optical and electrochemical characteristics. They could have widespread applications in organic photoelectric devices. The designs of most low-bandgap polymers have focused on three factors: 1) the degree of bond length alternation, 2) the resonance energy of the aromatic unit, and 3) the substituents.


Weizhi Wang, Fudan University, Shanghai, China, and colleagues have prepared three low-bandgap polycyclic aromatic hydrocarbons with different spatial arrangements based on hexaphenylbenzene derivatives: a linear type (pictured), a V-shaped type, and a zigzag type. The team used a Yamamoto reaction with Ni(COD)2 (COD= cyclooctadiene) as a catalyst for the synthesis. The resulting compounds differ in two factors: the mean deviation from planarity and the intermolecular and interchain coupling in the solid state, respectively.


UV/Vis absorption spectroscopy and measurements of the compounds' emission spectra showed that a higher degree of planarity in the polymer chain led to a redshift. The trend of the bandgap agrees with the optical test results. The synthesized compounds were successfully used to assemble organic field-effect transistors (OFET devices) and could have potential for use in electronic devices.


 

Article Views: 593

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

Most Read

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH