Double-Decker Terbium Complexes

  • ChemPubSoc Europe Logo
  • Author: Andrei Dragan
  • Published Date: 25 April 2018
  • Source / Publisher: Chemistry – An Asian Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Double-Decker Terbium Complexes

Metal bis(porphyrinato) double-decker complexes have been used for the construction of functional molecules such as molecular machines and single-molecule magnets (SMMs). One of the important features of the complexes is redox-multistability. To understand differences in the properties of the various oxidation forms, understanding their exact structure is important.


Ken-ichi Yamashita, Takuji Ogawa, and colleagues, Osaka University, Japan, have found a redox-driven symmetry change for terbium(III) bis(porphyrinato) double-decker complexes of the type [TbIII(por)2]n (n = –1,0,+1) that involves the azimuthal rotation of the porphyrin macrocycles. The anionic form (n = –1) has a symmetric structure with φ = 45 ° (φ = the azimuthal rotation angle between the two porphyrin macrocycles). Upon oxidation, φ becomes smaller (pictured). This change is induced by a steric effect on the substituents and/or an electronic effect on the porphyrin macrocycles.


The revealed structures could contribute not only to further understanding the relationship between the complexes' structure and their SMM properties, but could also help with the design of redox-driven advanced materials such as molecular machines.


 

Article Views: 592

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH