Supported Catalyst for Better Isomerization

  • ChemPubSoc Europe Logo
  • Author: Lois O'Leary
  • Published Date: 08 March 2012
  • Source / Publisher: ChemCatChem/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Supported Catalyst for Better Isomerization

Related Societies

Catalytic isomerization of allylic alcohols to carbonyl compounds is a simple, atom-economical, and valuable transformation. High yields in this reaction can achieved by homogeneous transition metal catalysis, however, separation of the products from the metal complex can be difficult. Xiaodong Zou, Belén Martín-Matute and co-workers, Stockholm University, Sweden, have developed a heterogeneous catalysis by anchoring cationic rhodium(I) complexes on inorganic mesoporous supports, making for a simple product separation.


Rh+ with sulfonated phosphine ligands immobilized on the mesoporous AlSBA-15 material performed the best out of the catalyst−support systems tested. Eleven different allylic alcohols were selectively isomerized with yields as high as >95 %, turnover numbers of up to 198 molproduct molcatalyst–1, and a minimum fivefold recyclability. Catalyst loadings were as low as 0.5 mol %.

Aliphatic primary allylic alcohols, typically difficult to isomerize, and those with a disubstituted double bond were also transformed into carbonyl compounds. Characterization results confirmed the integrity of the immobilization. Alongside hydrogen bonding and ionic interactions, the robustness of the system indicates that covalent bonding may also be present.


Article Views: 2454

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH