Dipeptide Ligands for Hydrogen-Production Catalysts

  • Author: Evenda Dench
  • Published Date: 14 December 2012
  • Source / Publisher: Chemistry – A European Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Dipeptide Ligands for Hydrogen-Production Catalysts

Related Societies

The outer-coordination sphere of metalloenzymes can fine-tune the reactivity and catalytic rates of these complexes. Hydrogenases are a class of enzymes that are gaining significant interest for their ability to efficiently and reversibly reduce H+ to H2 as hydrogen production catalysts.


Simone Raugei, John Roberts, Wendy Shaw, and colleagues at Pacific Northwest National Labs, Richland, USA, and Indiana University of Pennsylvania, USA, present a series of functional hydrogenase mimics and evaluate the effect of an amino acid and dipeptide outer-coordination sphere on the energy efficiency of these complexes. Comparison of the size, aromaticity, and position of these functional groups provides a mechanistic understanding of the role that the environment created by the outer-coordination sphere has on the catalytic activity for hydrogen production.

This environment has been shown to modulate both the rates and overpotentials of hydrogen production; for example, amide, acidic, or basic groups enhance catalysis up to five-fold, and overpotentials were lower with substituents at the N-phenyl meta position. All of the catalysts are active for hydrogen production, with rates averaging ≈1000 s–1, 40 % faster than that of the unmodified catalyst.


Article Views: 933

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on facebook

ChemistryViews.org on twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for free newsletter



A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH