Phosphine-Free Ruthenium Complex for Water Splitting

  • ChemPubSoc Europe Logo
  • Author: Sarah Millar
  • Published Date: 12 October 2014
  • Source / Publisher: Chemistry – A European Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Phosphine-Free Ruthenium Complex for Water Splitting

Related Societies

Understanding the mechanism of metal–ligand cooperative O–H splitting, especially with water, is relevant to renewable energy applications and the environment. Suitable catalysis candidates are transition metal complexes that exhibit metal–ligand cooperative reactivity and that have ligands that do not contain oxidizable donor atoms, such as phosphines, which can readily react with H2O or O2.


Robert Morris and colleagues, University of Toronto, Canada, have designed and synthesized a phosphine-free ruthenium pincer complex with a central N-heterocyclic carbene donor and methylpyridyl N-donors. The complex undergoes regioselective, intramolecular C–H/O–H bond cleavage and proton exchange at room temperature by aromatization/dearomatization of the two outer pyridine rings.


This process is facilitated by a coordinated tert-butoxide ion. The bulky alkoxide base plays an important role in the coordination sphere of the metal by acting as an intraligand proton shuttle. The researchers note that although this has not been observed in other metal–ligand cooperative systems, it may be operative in other pincer-type systems in which alkoxide bases, alcohols, or water are employed.

Initial water-splitting experiments show that the alkoxo–amido complex reacts with water to form a dearomatized ruthenium hydroxide complex, a first step towards designing new metal–ligand cooperative systems for water splitting.


 

Article Views: 3192

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH