Calcium against the Aromatic Cycle

  • ChemPubSoc Europe Logo
  • Author: ChemCatChem
  • Published Date: 12 October 2016
  • Source / Publisher: ChemCatChem/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Calcium against the Aromatic Cycle

Related Societies

The methanol-to-olefins (MTO) process is one of the most promising technologies to fulfill the growing demand for ethylene and propylene – primary building blocks in the chemical industry. Since cheap ethylene can be produced from shale gas-based ethane, high selectivity to propylene is one of the main challenges of the MTO process. Another challenge lies in engineering catalysts that are stable towards deactivation by coking.


Both challenges are closely related to the production of methylbenzene derivatives inside the pores of the zeolite used as a catalyst. The so-called aromatic cycle is responsible for the formation of ethylene and coke precursors and competes with the alkene cycle which mostly produces propylene.


Jorge Gascon, Delft University of Technology, the Netherlands, and colleagues addressed both challenges by designing a catalytic system in which the aromatic cycle could be suppressed. The catalyst was obtained by the incorporation of calcium into the commercially available zeolite ZSM-5.

The catalyst was characterized using N2 adsorption and NH3 desorption measurements, X-ray crystallography, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), infrared (IR) spectroscopy, and solid-state NMR measurements. The team could show that the incorporation of calcium allows fine-tuning of the zeolite acidity, which in turn leads to improved propylene selectivity and catalyst lifetime.


 

Article Views: 1536

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH