Polymer for Better Gas Separation

  • Author: ChemistryViews.org
  • Published: 30 December 2017
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Energy & Environmental Science/Royal Society of Chemistry (RSC)
  • Associated Societies: Royal Society of Chemistry (RSC), UK
thumbnail image: Polymer for Better Gas Separation

One approach to reduce CO2 emissions is the decarbonization of fossil fuels. Here, the fossil fuels are converted to H2 and CO2 at high temperatures and under high pressures. CO2 is then separated and sequestered and only H2 is used further. For this method, materials that can selectively and efficiently separate the two gases are needed.


Haiqing Lin and colleagues, University at Buffalo, The State University of New York, USA, have developed an acid-doped polymer membrane with an unprecedented H2/CO2 selectivity. The team immersed films of poly[2,20-(m-phenylene)-5,5-bibenzimidazole] (PBI) in solutions of H3PO4 or H2SO4. The acid molecules act as hydrogen-bonded bridges between imidazole rings in the polymer. This causes crosslinking between the polymer chains and improves the chain-packing efficiency.


The researchers used the synthesized crosslinked polymer membranes for H2/CO2 separation. They found that the H3PO4-doped membrane has an H2/CO2 selectivity of 140 at 150 °C, an unprecedented value for polymeric materials and one that is comparable to ordered 2D materials such as graphene oxide or metal-organic frameworks.


 

Article Views: 602

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH