Better Dye-Sensitized Solar Cells

  • Author: ChemistryViews.org
  • Published: 19 February 2018
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Advanced Energy Materials/Wiley-VCH
thumbnail image: Better Dye-Sensitized Solar Cells

Dye-sensitized solar cells (DSSCs) are a low-cost alternative to conventional silicon-based solar cells. DSSCs still need to be improved before they can be widely used. Ideally, their sintering temperature should be below the 450–500 °C range to lower costs and enable the use of low-heat-resistant materials. Additionally, the dyes and devices need to have good long-term stability.


Elena Serrano, Universidad de Alicante, Spain, Rubén D. Costa, University of Erlangen-Nuremberg, Erlangen, Germany, and IMDEA Materials Institute, Madrid, Spain, and colleagues have developed a new strategy for the design of low-temperature-sintered DSSCs. The team integrated hybrid nanoparticles into the solar cells' photoelectrode to improve the devices' properties. The researchers synthesized the hybrid nanoparticles, which incorporate the ruthenium(II)-based dye N3 in titania, using a co-condensation of tetrabutyl orthotitanate (TBOT) as the titania precursor with the N3 dye. They then layered the resulting hybrid material over commercially available P25 titania nanoparticles and sintered the resulting multilayered electrodes at 200 °C for 30 min.


The hybrid material improves the charge collection efficiency, photoconversion efficiency, and stability of DSSCs. According to the researchers, this can be attributed to an improved balance between charge transport and charge recombination in the material, as well as to improved dye stability caused by the integration of the dye in the titania network. The resulting solar cells have the highest efficiency for low-temperature-sintered DSSCs reported to date.


 

 

Article Views: 1000

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH