Microrobots Assemble Cell Patterns

  • Author: ChemistryViews
  • Published: 01 September 2012
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Lap on a Chip/RSC
  • Associated Societies: Royal Society of Chemistry (RSC), UK
thumbnail image: Microrobots Assemble Cell Patterns

Aaron Ohta and colleagues, University of Hawaii at Manoa, showed that disk-shaped, hydrogel microrobots made of poly(ethylene glycol) diacrylate (PEGDA) moved by a laser pulse can assemble cells for culturing purposes and could be used to organize cells into tissues that can grow outside of the body.


The microrobots are moved optothermally by a laser pulse. The laser is shone straight through an 80-μm-diameter gas bubble in an aqueous medium and heats its far sides. The temperature gradient at the bubble microrobot’s surface causes a thermocapillary flow. Its vertical component floats the bubble and microrobot above the substrate at up to 320 μm s−1. The parallel component causes the bubble, and the microrobot above it, to center itself over the laser point. The bubble follows the movement of the laser spot.

A single microrobot or a pair of microrobots working in cooperation were used to move 20-μm-diameter polystyrene beads into different patterns. They were also used to assemble patterns made of single yeast cells and cell-laden agarose microgels. Both were cultured and the cells successfully multiplied.


The researchers now want to control many microrobots at once which should make it easier and faster to accomplish complicated micro-assembly tasks, such as creating artificial tissues and organs in a laboratory setting.


Article Views: 1595

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH