2010 Trends in Technical Chemistry

2010 Trends in Technical Chemistry

Author: ChemViews/GDCh

Nachrichten aus der Chemie (the membership magazine of the GDCh) annually publishes trend reports in which authors spot and compile an overview of inspiring work and recent trends in the most important chemical disciplines.

ChemViews gives you an overview of the latest trend report, its authors and the literature collected.

Technical Chemistry 2010

The impending scarcity of raw materials and the ambitious climate targets lead to new developments in catalysis as well as techniques for sequestering or utilization of CO2 – either directly or through renewable resources such as plant biomass. The commodity transition begins, and a new raw material basis is emerging that potentially has a closed carbohydrate cycle.

► Full article (in German):

All trend reports on ChemViews

Authors

Andrea Kruse, born 1964, studied chemistry from 1984 to 1991 in Heidelberg, Germany. She did her PhD in 1994 at the Research Center Karlsruhe and the University of Heidelberg, and habilitated 2006 at the Technical University Darmstadt, Germany. For 20 years she has been concerned with hydrothermal reactions. She is private lecturer at the Technical University Darmstadt and heads a research group at the Institute for Catalysis Research and Technology at the Karlsruhe Institute of Technology (KIT).

Her chief activity is the research and development for hydrothermal conversion of biomass.

Stefan Ernst, born 1960, studied chemical engineering at the University of Karlsruhe, Germany, and did his PhD on form-selective catalysis in zeolites 1987 at the Engler Bunte Institute of the University of Karlruhe. He habilitated in technical chemistry in 1996 at the University of Stuttgart, Germany. Since 1997, he has held a chair in technical chemistry at the Technical University of Stuttgart.

His fields of activity are in catalysis and the separation of substance on porous solids (zeolite, MOF, etc.)


Peter Fröhlich
, born 1981, studied chemistry at the Technical University Bergakademie Freiberg, Germany. He started work for his PhD in 2006 at the Institute of General Biochemistry at the Technical University Dresden, Germany, and continued it under the supervision of Martin Bertau at the Institute of Technical Chemistry of the Technical University Bergakademie Freiberg.

His research interests focus on sustainable technologies, which also includes the development of new processes for the industrial utilization and exploitation of CO2.

Michael Katzberg, born 1981, studied food chemistry and did his PhD in 2009 at the Institute for General Biochemistry of the Technical University Dresden. Following a stay at the University of Lund, Sweden, he now works in the group of Martin Bertau at the Institute of Technical Chemistry of the Technical University Bergakademie Freiberg.

His interests are white (industrial) biotechnology and sustainable techniques.

References

1) P. Radgen, C. Cremer, S. Warkentin et al. Bewertung von Verfahren zur CO2-Abscheidung und -Deponierung,  F+E-Vorhaben Nr. 20341110, Fraunhofer Institut für Systemtechnik und Innovationsforschung, Bundesanstalt für  Geowissenschaften und Rohstoffe, 2005.
2) VGB PowerTech e.V., CO2 Capture and Storage – A VGB Report on the State of the Art, 2004.
3) N. Berguerand, A. Lyngfelt, Fuel 2008, 87, 2713. DOI: 10.1016/j.egypro.2009.01.055
4) Bundesministerium für Wirtschaft und Arbeit, Forschungs- und Entwicklungskonzept für emissionsarme fossil befeuerte
Kraftwerke – Bericht der Cooretace-Arbeitsgruppen, 2003, Nr. 527.
5) S. Knopf, F. May, C. Müller, J. P. Gerling, Energiewirtschaftliche Tagesfragen 2010, 60, 76.
6) www.co2sink.org
7) D. Kiessling, C. Schmidt-Hattenberger, H. Schuett et al., Int. J. Greenhouse Gas Control 2010, 4, 816. DOI: 10.1016/j.ijggc.2010.05.001
8) H. Würdemann, F. Möller, M. Kühn et al., Int. J. Greenhouse Gas Control 2010, submitted.
9) F. Ausfelder, A. Bazzanella, Diskussionspapier – Verwertung und Speicherung von CO2, Dechema, Frankfurt 2008. PDF
10) K. Horn, H.-J. Laue, U. Franz et al., Kunststoffe International 2007, 10, 72.
11) T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365.
12) W. Leitner, Angew. Chem. Int. Ed. 1995, 34, 2207. DOI: 10.1002/anie.199522071
13) W. Leitner, GIT Fachz. Lab. 1992, 36, 912.
14) A. Boddien, B. Loges, F. Gärtner et al., J. Am. Chem. Soc. 2010, 132, 26, 8924. DOI: 10.1021/ja100925n
15) Q. Zhang, J. Kang, Y. Wang, ChemCatChem 2010, 2, 1030. DOI: 10.1002/cctc.201000071
16) B. Graf, H. Schulte, M. Muhler, J. Catal., 2010, 276, 66.
17) J. Pérez-Ramírez, C. H. Christensen, K. Egeblad, C. H. Christensen, J. C. Groen, Chem. Soc. Rev. 2008, 37, 2530. DOI: 10.1039/B809030K
18) B. Louis, F. Ocampo, H. S. Yun, J. P. Tessonnier, M. Maciel Pereira, Chem. Eng. J. 2010, 161, 397.
19) P. With, A. Heinrich, M. Lutecki, S. Fichtner, B. Böhringer, R. Gläser, Chem. Eng. Technol. 2010, 33, 1712. DOI: 10.1002/ceat.201000196
20) S. Ernst, A. Wagener, M. Schindler, F. Rudolphi, Chem. Ing. Tech. 2007, 79, 851. DOI: 10.1002/cite.200700050
21) M. Hartmann, S. Kunz, D. Himsl, O. Tangermann, S. Ernst, A. Wagener, Langmuir 2008, 24, 8634. DOI: 10.1021/la8008656
22) C. Gücüyener, J. van den Bergh, J. Gascon, F. Kapteijn, J. Am. Chem. Soc. 2010, 132, 17704. DOI: 10.1021/ja1089765
23) A. Corma, H. Garcia, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606. DOI: 10.1002/chin.201046237
24) D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 2009, 48, 7502. DOI: 10.1002/anie.200806063
25) D. Jiang, T. Mallat, D. M. Meister, A. Urakawa, A. Baiker, J. Catal. 2010, 270, 26.
26) C. Van Doorslaer, J. Wahlen, P. Mertens, K. Binnemans, D. De Vos, Dalton Trans. 2010, 39, 8377.
27) S. Werner, N. Szesni, A. Bittermann, M. J. Schneider, P. Härter, M. Haumann, P. Wasserscheid, Appl. Catal. A: General 2010, 377, 70.
28) U. Kernchen, B. Etzold, W. Korth, A. Jess, Chem. Eng. Technol. 2007, 30, 985. DOI: 10.1002/ceat.200700050
29) J. Arras, E. Paki, C. Roth et al., J. Phys. Chem. C 2010, 114, 10520. DOI: 10.1021/jp1016196
30) A. Kruse, E. Dinjus, J. Supercritical Fluids 2007, 39, 362.
31) B. Hu, W. Kan, L. Wu, M. Antonietti, M. M. Titirici, Adv. Mater. 2010, 22, 813.
32) M. M. Titirici, A. Thomas, S. H. Yu, J. O. Müller, M. Antonietti, Chem. Mater. 2007, 19, 4205.
33) G. W. Huber, J. W. Shabaker, S. T. Evans, J. A. Dumesic, Appl. Catalysis B: Environmental 2006, 62, 226.
34) F. Goudriaan ,D. G. R. Peferoen, Chemical Engineering Science 1990, 45, 2729.
35) V. Lehr, M. Sarlea, L. Ott, H. Vogel, Catalysis Today 2007, 121, 121.
36) L. Ott, M. Bicker, H. Vogel, Green Chem. 2006, 8, 214.
37) M. Bicker, S. Endres, L. Ott, H. Vogel, J. Molecular Cat. A: Chemical 2005, 239, 151.
38) S. Stucki, F. Vogel, C. Ludwig, A. G. Haiduc, M. Brandenberger, Energy Environment. Sci. 2009, 2, 535. DOI: 10.1039/b819874h
39) D. C. Elliott, Biofuels Bioprod. Bioref 2008, 2, 254. DOI: 10.1002/bbb.74
40) A. Kruse, Biofuels Bioprod. Bioref. 2008, 2, 415. DOI: 10.1002/bbb.93
41) N. Dahmen, E. Henrich, A. Kruse, K. Raffelt, Biomass to Biofuels: strategies for global industries, Wiley, New York, 2010.
42) F. Bergius, Naturwissenschaften, 1928, 16, 1.
43) A. Kruse, The Journal of Supercritical Fluids, 2009, 47, 391.
44) A. A. Peterson, P. Vontobel, F. Vogel, J. W. Tester, The Journal of Supercritical Fluids, 2008, 43, 490.
45) A. Kruse, D. Forchheim, M. Gloede, F. Ottinger, J. Zimmermann, The Journal of Supercritical Fluids, 2010, 53, 64.
46) F. M. A. Geilen, B. Engendahl, A. Harwardt et al., Angew. Chem. In. Ed. 2010, 49. DOI: 10.1002/anie.201002060
47) J. Q. Bond, D. M. Alonso, D. Wang, R. M. West, J. A. Dumesic, Science 2010, 327, 1110. DOI: 10.1126/science.1184362
48) J.-P. Lange, R. Price, P. M. Ayoub et al., Angew. Chem. Int. Ed. 2010, 49 (26), 4479. DOI: 10.1002/anie.201000655
49) R. Palkovits, Angew. Chem. Int. Ed. 2010, 49, 4336. DOI: 10.1002/anie.201002061
50) Global renewable Fuels Alliance. Pressemitteilung 21.03.2010.
51) Inbicon A/S. Pressemitteilung 29.10.2010.
52) J. Larsen, M. Østergaard Petersen, L. Thirup, H.W. Li, F. K. Iversen, Chem. Eng. Technol. 2008, 31, 765. DOI: 10.1002/ceat.200800048
53) Süd-Chemie AG, Pressemitteilung 21.07.2010.
54) E.J. Stehen, Y. Kang, G. Bokinsky et al., Nature 2010, 463, 559. DOI: 10.1038/nature08721
55) M. A. Rude, A. Schirmer, Curr. Opin. Microbiol. 2009, 12, 274.
56) J. E. Campbell, D. B. Lobell, C. B. Field, Science 2009, 324, 1055. DOI: 10.1126/science.1168885
57) T. L. Richard, Science 2010, 329, 793. DOI: 10.1126/science.1189139
58) A. Cho, Science 2010, 329, 786. DOI: 10.1126/science.329.5993.786
59) The Economist 2010, 394:8675, 72.
60) M. Katzberg, N. Skorupa-Parachin, M. Gorwa-Grauslund, M. Bertau, Int. J. Mol. Sci. 2010, 11, 1735.
61) C. K. Savile , J. M. Janey, E.C. Mundorff et al., Science 2010, 329, 305. DOI: 10.1126/science.1188934
62) S. Lutz, Curr. Opin. Biotechnol. 2010, 21, 734.
63) J. B. Siegel, A. Zanghellini, H. M. Lovick et al., Science 2010, 329, 309. DOI: 10.1126/science.1190239

Leave a Reply

Kindly review our community guidelines before leaving a comment.

Your email address will not be published. Required fields are marked *