Rh-Catalyzed Electrooxidative C-H Alkenylation

  • ChemPubSoc Europe Logo
  • Author: Angewandte Chemie International Edition
  • Published Date: 08 May 2018
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Rh-Catalyzed Electrooxidative C-H Alkenylation

Rhodium(III) catalysts play an historic role in oxidative C–H functionalization chemistry. It typically requires stoichiometric amounts of toxic and/or expensive sacrificial metal oxidants such as silver(I) and copper(II) salts. Electrosynthesis uses electricity as the sole oxidant, thereby removing the need for chemical oxidants.

Lutz Ackermann and colleagues, Georg-August-Universität Göttingen, Germany, have discovered the first electrochemical rhodium-catalyzed C–H activation that avoids use of hazardous chemical oxidants. The environmentally benign method uses electricity as a terminal oxidant to perform cross-dehydrogenative twofold C–H/C–H functionalization with weakly coordinating benzoic acids and benzamides, generating H2 as the sole byproduct. The method tolerates a range of electron-deficient arenes and alkenes, including sensitive esters and enolizable ketones.

Evidence suggests that the Rh(III)-catalyzed electrooxidative C–H alkenylation occurs by a base-assisted internal electrophilic substitution (BIES) mechanism, within which a potassium acetate additive has a significant influence on the reduction potential of a key organometallic Rh(III) species.


 

Article Views: 1165

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH