Bismuth Directs Asymmetric Cyclopropanation

  • ChemPubSoc Europe Logo
  • Author: Angewandte Chemie International Edition
  • Published Date: 21 March 2019
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Bismuth Directs Asymmetric Cyclopropanation

Cyclopropanes are important motifs in medicinal chemistry. There are several methods for their synthesis in optically pure form. Asymmetric cyclopropanations catalyzed by chiral dirhodium tetracarboxylate complexes are particularly popular and efficient.


Alois Fürstner and colleagues, Max Planck Institute for Coal Research, Mülheim an der Ruhr, Germany, have improved this reaction. The team has discovered that replacing one of the two rhodium atoms of the precatalyst [Rh2(PTTL)4] (PTTL = N-phthaloyl-tert-leucinate) with bismuth improves the asymmetric induction. The modified precatalyst, [BiRh(PTTL)4] (pictured) was prepared by mixing [BiRh(TFA)4] (TFA = trifluoroacetate) with the PTTL ligand.


The team compared the dirhodium and the bismuth-modified precatalyst using the asymmetric cyclopropanation of different styrene derivatives. They found that the bismuth replacement significantly improved the reaction's enantioselectivity. The large bismuth center creates a chiral pocket around the reactive rhodium center that is narrower than in the original dirhodium complex. The bismuth site itself is unreactive and does not catalyze any side reactions. This strategy of using heterobimetallic complexes is an unusual approach to catalyst optimization.

 


 

Article Views: 903

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH