Electrochemical Synthesis of Pyrrolidines

  • ChemPubSoc Europe Logo
  • Author: Chemistry – A European Journal
  • Published Date: 09 July 2019
  • Source / Publisher: Chemistry – A European Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Electrochemical Synthesis of Pyrrolidines

Related Societies

In order to access N-heterocyclic pyrrolidines (pictured) and piperidines, organic chemists often use the HLF (Hofmann–Löffler–Freytag) reaction (pictured). This reaction converts readily available primary aliphatic amines into their cyclic secondary counterparts. The cyclization is based on the generation of N-centered radicals, followed by a hydrogen atom transfer (HAT) and the ring closure. Despite the great potential of this reaction, there are still limitations regarding the generation of the initial radical species. Often, strong oxidants or harsh conditions have to be used.


Magnus Rueping, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, and RWTH Aachen University, Germany, and colleagues have investigated the possibility of electrochemically generating N-centered radicals for the synthesis of nitrogen heterocycles. They found that, using a mild electrochemical procedure, the N-centered radicals can be directly formed from tosyl-protected amines. The reaction can be performed in undivided electrochemical cells with cheap and readily available graphite and stainless steel electrodes. The N-radical species are generated at the anode and the base required for the reaction is generated at the cathode.


The team prepared a broad range of valuable pyrrolidines in good yields and with high chemoselectivity. The approach is cost-effective and can be powered by electricity from solar panels. The reaction also is easy to scale up. In addition, the team was able to demonstrate that the procedure can be performed in a continuous flow reactor.


 

Article Views: 361

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH