2D Transition-Metal Phosphides

  • ChemPubSoc Europe Logo
  • Author: Angewandte Chemie International Edition
  • Published Date: 14 November 2019
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: 2D Transition-Metal Phosphides

Many transition-metal phosphides (TMPs) are narrow-gap semiconductors and can be used as electrocatalysts. Two-dimensional (2D) TMPs are especially attractive due to highly exposed active sites that promote efficient reactions. However, the synthesis of 2D TMPs is challenging because TMPs are intrinsically non-layered materials. They cannot be delaminated into separate, thin layers like, e.g., graphite can be converted to graphene.


Xinliang Feng, Technical University of Dresden, Germany, and colleagues have developed a bottom-up approach to 2D TMPs. The team used 2D phosphorene sheets as a phosphorus source and as templates for the synthesis. First, defect-free phosphorene sheets were prepared via the electrochemical exfoliation of black phosphorus. The resulting sheets were mixed with metal salts and underwent solvothermal reactions. Metal sources such as ammonium molybdate, vanadyl acetylacetonate, ferrocene, iron(III) acetylacetonate, cobalt(II) acetylacetonate, or nickel(II) acetylacetonate were used.


This approach gave a series of 2D TMPs under mild conditions. Some of these materials have useful properties: 2D cobalt phosphide (Co2P), for example, acts as a p-type semiconductor and can be used in field-effect transistors. Doping this material with iron resulted in Co1.5Fe0.5P, which has an outstanding electrocatalytic performance for the oxygen evolution reaction (OER). According to the researchers, the work also provides useful insights for the development of other non-layered 2D materials.


 

 

Article Views: 705

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH