Combination Therapy against Cancer

  • Author: Angewandte Chemie International Edition
  • Published Date: 13 October 2020
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH GmbH
thumbnail image: Combination Therapy against Cancer

In their quest to destroy cancer cells, researchers are turning to combinational therapies more and more. Wen Sun, Jiangli Fan, Dalian University of Technology, China, Katharina Landfester, Max Planck Institute for Polymer Research, Mainz, Germany, and colleagues have combined a chemotherapeutic and photodynamic approach. All agents are encapsulated in nanocapsules with a protein shell to be delivered to the tumor. There, light irradiation triggers a cascade of events, which lead to the destruction of the tumor cells.




Synergistic Anticancer Therapy

Different anticancer agents use different strategies. DNA-damaging agents make the DNA dysfunctional so the tumor cannot grow. Photodynamic agents generate reactive oxygen species (ROS) when irradiated with light. These ROS then interfere with organelles in the cell and push the cells toward programmed cell death known as apoptosis.


However, some cancer types have developed resistances. Either the drug cannot enter the cell or the cells quickly repair the damaged DNA strands. To enhance effectivity, the team combined chemotherapeutic and photodynamic agents. All agents were packed inside a nanocapsule for delivery to the tumor cells.


Photodynamic therapy can be less effective in solid tumors within which the oxygen level is too low to generate enough ROS. Therefore, the scientists used a modified system that partly recycles oxygen. In this system, a photosensitizer produces ROS after light irradiation. Enzymes of the cell convert the ROS to hydrogen peroxide. A Fenton reagent then back-transforms the hydrogen peroxide to ROS and oxygen.




Two Cell Killer Agent Systems in One Nanocapsule

The researchers said that it was challenging to assemble all reagents in one nanocapsule. The chemotherapeutic agent, cisplatin, is poorly soluble in water, while ovalbumin, the nanocapsule protein, does not dissolve in the chosen organic solvent. Using a miniemulsion technique, the scientists eventually combined all three reagents in a solvent mixture and wrapped them up in a shell of ovalbumin. They stabilized and emulsified these nanocapsules by adding a copolymer based on poly(ethylene glycol).


The scientists tested this system on tumor cell lines. The nanocapsules entered the cells, released their loads, and developed ROS when irradiated with red light. The agent set also killed cells that were resistant to cisplatin or had a particularly low oxygen concentration. The combined encapsulated drugs also stopped tumor growth in live mice. The team found that the reagents accumulated in the tumor tissue. They also made the tumors shrink over time without affecting healthy tissue or other organs.


The researchers highlighted that the anticancer agents were delivered to the tumor in nanocapsules and worked synergistically. Treatments involving only one agent, or a combination of two, were much less effective. The team proposed that similar synergistic platforms will play a major role in future therapy settings.


 

 

Article Views: 1094

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH