Metallocene Batteries

  • Author: Angewandte Chemie International Edition
  • Published Date: 07 May 2021
  • Copyright: Wiley-VCH GmbH
thumbnail image: Metallocene Batteries

Can batteries be fast-charging/discharging as well as non-explosive? Transition-metal metallocenes have a rich redox chemistry and can allow fast electron transfer. This makes them interesting candidates for use in batteries. For example, ferrocene- and cobaltocenium-based organic redox batteries (ORBs) have potential as non-toxic, high-energy, and high-power-density alternatives to lithium-based batteries. However, they have not reached commercialization yet.

Seyyed Mohsen Beladi-Mousavi, Lorenz Walder, University of Osnabrück, Germany, and colleagues have prepared an all-metallocene rechargeable battery. This ORB consists of a poly-ferrocenium-based cathode and a poly-cobaltocene-based anode. Both of these redox polymers were embedded in porous graphene via self-assembly. The resulting [email protected] materials were dropcast onto current collectors to create poly-metallocene-based films on the electrodes. Finally, the GO was transformed to reduced GO (rGO) electrochemically.

The resulting battery's fast charging and discharging is due to the ultrafast electron transfer between the metallocene centers, the high electronic conductivity of graphene, and the porous structure of the metallocene composite. The non-explosive property of the battery results from the use of an aqueous LiClO4 electrolyte and from a phenomenon called "harmonic height breathing". Height breathing is the increase or decrease of the height of the active battery materials when ions flow in or out during (dis)charging. This has long been considered problematic for ORBs. However, according to the researchers, no pressure builds up in the closed organic metallocene battery because the individual height movements within the cell are reciprocal and formally cancel each other out.



Article Views: 2557

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from, please contact us first for permission and consult our permission guidance prior to making your request

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH