New Anode Material for Microbial Fuel Cells

  • ChemPubSoc Europe Logo
  • Author: ChemViews
  • Published Date: 05 April 2012
  • Source / Publisher: ChemSusChem/Wiley-VCH
  • Copyright: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: New Anode Material for Microbial Fuel Cells

Related Societies

Microbial fuel cells (MFCs) are electrochemical cells that use electroactive microorganisms, usually bacteria, to oxidize organic matter and generate electrical power. One major factor that limits performance involves the anode. The performance is decisively determined by the density of electrochemically active bacteria grown at the anode and their metabolic rate, and by the rate of electron transfer from the bacteria to the electrode.

Haoqing Hou, Jiangxi Normal University, Nanchang, China, and colleagues use a natural plant, kenaf (Hibiscus cannabinus; a crop plant) as raw material in the preparation of a macroporous carbon for high-performance MFC anodes. The ordered three-dimensional macroporous architecture of the kenaf stem was directly transformed into an ordered 3D carbon material, denoted as 3D-KSC, via a simple carbonization procedure.

The new material allows a high anodic current density. The 3D-KSC is based on a natural plant resource that is renewable and abundant. The direct carbonization provides a lowcost, environmentally friendly way for the preparation of porous carbon, which facilitates the large-scale application in microbial fuel cells. Moreover, the 3D-KSC may serve in other applications, such as electrodes in electrochemical cells, supports for catalysts, filters, or high-temperature chromatography columns.

Article Views: 3845

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from, please contact us first for permission. more

CONNECT: on Facebook on Twitter on YouTube on LinkedIn Sign up for our free newsletter

A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH