Specificity by Ring Size

  • Author: ChemMedChem
  • Published Date: 13 April 2012
  • Source / Publisher: ChemMedChem/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Specificity by Ring Size

Related Societies

Too Specific for Testing


New drug candidates require testing in animal models prior to approval for clinical use. A recently developed antagonist based on a bicyclic peptide inhibited the human serine protease plasma kallikrein—an enzyme capable of cleaving peptide bonds in proteins and responsible for the co-ordination of various physiological functions—potently and selectively. However, the inhibitor was ‘too’ selective, not inhibiting murine plasma kallikrein which prevented its testing in animal models. Researchers led by Christian Heinis have developed bicyclic peptides that inhibit both human and murine plasma kallikrein, but not any paralogous proteases; their work is reported in ChemMedChem.


"We compared structural models of target (and related non-target) proteases to identify conserved regions in the vicinity of the active site, and modulated the loop size of our libraries of peptide macrocycles accordingly," says Heinis on behalf of his team at the Swiss Federal Institute of Technology in Lausanne and colleagues John Tite, Bicyclic Therapeutics, and Greg Winter, Laboratory of Molecular Biology, both Cambridge, UK. "From these libraries, we were able to isolate potent bicyclic peptide inhibitors of human, rat and monkey plasma kallikrein that do not inhibit related human serum proteases."


Peptide Loop Length Influences Specificity


Based on structural considerations, the authors hypothesize that the length of the peptide loops may influence specificity. By modulating the loop size of the peptide macrocycles, they succeeded in selecting potent human plasma kallikrein inhibitors with the desired specificity profile. Heinis states further that "...the bicyclic peptides combine key qualities of antibody therapeutics (high affinity and specificity) and advantages of small-molecule drugs and may offer an attractive format for the development of therapeutics." The authors conclude that this strategy will likely facilitate the use of peptide macrocycles in animal models, while avoiding unwanted off-target activities in the clinic.

Image: © Wiley-VCH


Article Views: 2968

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission and consult our permission guidance prior to making your request

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH