Hexameric Porphyrin Wheel for Light Harvesting

  • ChemPubSoc Europe Logo
  • Author: Sarah Millar
  • Published Date: 28 September 2013
  • Source / Publisher: Chemistry – A European Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Hexameric Porphyrin Wheel for Light Harvesting

Related Societies

Bacteriochlorophyll pigments that are arranged in wheel-like architectures are found in light-harvesting complexes, such as LH2 and LH1. These wheel-like structures facilitate energy migration to the reaction center. In artificial photosynthesis studies, particular attention is therefore being given to construction of covalently linked cyclic porphyrin arrays, in which the manipulation of the inter-porphyrinic interaction is essential to achieve efficient excitation energy transfer.

Atsuhiro Osuka, Kyoto University, Japan, and colleagues have developed Ag(I)-promoted meso–meso coupling reactions of 5,15-diaryl-substituted Zn(II)-porphyrins as a means to covalently connect porphyrins. By using a Suzuki–Miyaura coupling reaction through a one-pot or a stepwise route, the team synthesized a cyclic dodecameric porphyrin oligomer, in which six meso–meso-linked zinc(II) diporphyrin subunits are bridged by 1,3-phenylene spacers to form a large hexagonal ring. This synthetic strategy was extended to a 1,3-phenylene-bridged meso–meso-linked diporphyrin dimer, which led to production of a larger hexagonal ring consisting of 24 porphyrins.

Both porphyrin wheels display efficient excitation energy hopping (EEH) along the wheel; EEH rates have been estimated to be 4 and 35 ps for the 12-meric and 24-meric wheels, respectively. In addition, the porphyrin hexamer is interesting as a shape-persistent organic molecule.

Article Views: 2338

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter

A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH