On the Surface of It All

  • ChemPubSoc Europe Logo
  • Author: Anne Deveson
  • Published Date: 10 February 2014
  • Source / Publisher: Chemistry – A European Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: On the Surface of It All

Related Societies

The precise location of ligands and the ability to monitor catalytic reactions is of high interest in heterogeneous catalysis. Many in situ techniques have been developed, but the use of simple alternative methods, similar to those used in molecular chemistry, for example, NMR spectroscopy, could bring additional information on the reaction sites and possibly on reaction intermediates.


Karine Philippot, Bruno Chaudret, and co-workers, Toulouse, France, have studied the surface chemistry of ruthenium nanoparticles (Ru NPs) by using GC, IR, solid-state, and gas-phase NMR spectroscopy. They have also characterized the nanoparticles by wide-angle X-ray scattering (WAXS) and X-ray photoelectron spectroscopy (XPS) analysis.


They studied three test reactions—CO oxidation, CO2 reduction, and styrene hydrogenation—and looked for evidence of the influence of the presence or absence of ancillary ligands on the reactivity of the Ru surface. Taken together their results provide a picture at the molecular level of small Ru NPs where CO binds preferably in a bridging coordination mode on sites that are also sites of arene hydrogenation, namely the face atoms. These are also the preferred sites for CO oxidation. Hydrides and terminal CO compete for sites located near the bulky diphosphine ligands and as they are inactive for arene hydrogenation, they are presumably placed at apexes and edges.
These results are a good illustration of the possibility to perform selective chemistry on the surface of nanoparticles.


Article Views: 2643

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH