Sodium: The Alternative Battery

  • Author: Anne Deveson
  • Published Date: 12 July 2014
  • Source / Publisher: Chemistry - A European Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Sodium: The Alternative Battery

Related Societies

Owing to their low cost and the infinite sodium resources available, the use of sodium-ion batteries that can function at room temperature with long-lifetimes has recently become of interest for large-scale stationary energy storage. Shu-Lei Chou and co-workers at the University of Wollongong, Australia, have found that an expanded MoS2/graphene (MoS2/G) composite, which can be prepared by a simple hydrothermal method, functions very well as the anode material in both sodium-ion batteries and sodium-ion pseudocapacitors.

An electrode made from the MoS2/G composite is capable of delivering a high capacity of approximately 400 mAh g–1 over 200 cycles. Both ex situ X-ray diffraction (XRD) investigations and the low initial Coulombic efficiency that was measured confirm that the MoS2 and Na undergo an irreversible intercalation reaction during the first charge, followed by a highly reversible conversion reaction. The conversion reaction, with typical high capacity and voltage hysteresis, can be applied in advanced electrochemical capacitive storage systems.

Article Views: 3171

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from, please contact us first for permission. more

CONNECT: on Facebook on Twitter on YouTube on LinkedIn Sign up for our free newsletter

Magazine of Chemistry Europe (16 European Chemical Societies)published by Wiley-VCH