New Route to Bleaching Agent

  • ChemPubSoc Europe Logo
  • Author: Brigitte Osterath
  • Published Date: 15 December 2010
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: New Route to Bleaching Agent

The oxidizing agent chlorine dioxide (ClO2) can be produced from chlorite ions using a manganese catalyst, according to researchers at Princeton University, USA. After adding a porphyrin manganese (III) compound to a slightly acidic solution of sodium chlorite NaClO2, “the appearance of ClO2 occurred within seconds,” Thomas P. Umile and John T. Groves write. The gaseous compound is an alternative to chlorine in paper bleaching, pathogen decontamination and water treatment.


Umile and Groves produced chlorine dioxide in a 60 % yield from a sodium chlorite solution under ambient pressure and temperature. The reaction proceeded very fast in the first two minutes after catalyst addition; then the ClO2 concentration reached a maximum. The researchers removed the product from the reaction vessel by bubbling helium through the solution and collecting the gases in water. After the reaction was finished, it could be started again by adding new sodium chlorite, “further indicating the stability of the catalysts,” as Umile and Groves write. An immobilized form of the catalyst was also active, they say.


ClO2 is endothermic, therefore quite unstable and dangerous to handle. Nowadays it is produced at large scale by reducing sodium chlorate NaClO3 in a strong acidic solution. An electrochemical oxidation of chlorite ClO2 is possible but, according to the authors, requires high energy input.


Article Views: 3579

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH