Sustainable Bioplastics for Biomedical Applications

  • Author: Angewandte Chemie International Edition
  • Published Date: 03 March 2016
  • Source / Publisher: Angewandte Chemie/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Sustainable Bioplastics for Biomedical Applications

Metal-free Recyclable Biopolyester

Most plastic and polymer materials around are poorly sustainable, as they are petroleum-based, their preparation needs metal catalysis, and they persist in the environment and cannot be effectively recycled. Seeking for true sustainability, American scientists have prepared a fully recyclable biopolyester from a biofeedstock-based chemical without any metal catalyst involved. As they report in the journal Angewandte Chemie, the polymer is best suited for regular polyester applications, and its monomer component is completely recovered upon heating at high temperatures.

Sustainability and recyclability are key requirements for next-generation polymers. Furthermore, atom economy during the preparation process is also requested because it is desirable to produce as little waste as possible. One possible candidate for such atom-economic polymerization to form a recyclable biopolymer was the succinic acid derived biochemical γ-butyrolactone or GBL, but its polymerization to poly-GBL or PGBL turned out to be extremely challenging and could only be achieved under very harsh conditions and metal catalysis. Eugene Y.-X. Chen and his postdoctoral fellow Miao Hong at Colorado State University have identified a purely organocatalytic approach: "For biomedical applications, it would be desirable that PGBL could be produced by metal-free organopolymerization of GBL," Chen describes their motivation.

 

Organopolymerization of γ-Butyrolactone Led to Polyester with Complete Recyclability

Their challenge was to push forward a reaction that is deemed thermodynamically unfavorable. Thus, the scientists employed an extraordinarily strong organic base to make the molecule more reactive and initiate an atom-economic procedure, which is called ring-opening polymerization. As a result, at temperatures as low as −40 °C and ambient pressure, the reaction proceeded smoothly. "This system enabled high monomer conversion of up to 90 % and high-molecular-weight polymers in a relatively short time period of four hours or less," the scientists write. They obtained the polymer product as a powder, which displayed the typical properties of a polyester material that can be cast into different forms and shapes.


Its most important property, however, is its recyclability. The authors emphasize: "The PGBL obtained by the current organopolymerization is completely recyclable back to its monomer in the pure state upon heating the bulk polymer." And as no metal catalysis is involved, this process will be especially attractive for applications where metal-free products or processes are of major concern. Therefore its main targets are the biomedical or microelectronics industry.


Article Views: 2628

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission and consult our permission guidance prior to making your request

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH