CO2 Reduction with Carbon Composites

  • ChemPubSoc Europe Logo
  • Author: Pamela Alsabeh
  • Published Date: 03 August 2016
  • Source / Publisher: Chemistry – A European Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: CO<sub>2</sub> Reduction with Carbon Composites

Related Societies

Carbon dioxide, a greenhouse gas contributing to global warming, has become a popular research subject. Reducing CO2 into non-harmful derivatives for use as fuel is of particular interest, especially in terms of applying renewable energy such as solar or wind power to such reduction processes. Due to their low cost, large surface area, and high electrical conductivity, carbon nanomaterials are being widely used as electrocatalysts for the electrocatalytic reduction of CO2.

Rose Amal and colleagues, University of New South Wales, Sydney, Australia, have developed a CO2 reduction electrocatalyst by covalently attaching graphitic carbon nitride (g-C3N4) onto multiwall carbon nanotubes (MWCNTs). The g-C3N4/MWCNTs composite was prepared using cheap starting materials in an easy two-step approach of co-precipitation followed by polycondensation. Transmission electron microscopy (TEM) images showed that the MWCNTs were well integrated into the g-C3N4 material, which formed a layered structure.

Employing the composite as an electrocatalyst showed that it was stable for the selective reduction of CO2 to CO. The Faradaic efficiency of the process reached a maximum 60 % with 0.75 V applied potential. Notably, g-C3N4 or MWCNTs as individual electrocatalysts have negligible catalytic performance. The researchers attribute the high catalytic activity of the composite to its active nitrogen-carbon sites, an enlarged Brunauer-Emmett-Teller surface in comparison to the individual materials, as well as improved conductivity.


Article Views: 1770

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from, please contact us first for permission. more

CONNECT: on Facebook on Twitter on YouTube on LinkedIn Sign up for our free newsletter

A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH