Fibrous Allrounder

  • Author: Lisa-Marie Rauschendorfer
  • Published: 02 December 2016
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Advanced Energy Materials/Wiley-VCH
thumbnail image: Fibrous Allrounder

Most of todays existing energy devices have a planar or bulky structure, which does not meet the urgent demand of portable, flexible and wearable applications. Fibrous carbon materials, such as carbon nanotube fibers, graphene fibers, and carbon fibers (CFs) are promising electrode materials but suffer from intrinsically limited electrochemical activities, which significantly restrict their actual performance in fibrous energy devices.

Jia Liang, Nanjing University, Jiangsu, China, and colleagues prepared a coaxial fibrous electrode by growing ultrathin MoS2 nanofilms onto TiO2 nanoparticle coated carbon fiber (CF@TiO2@MoS2). The team found that the high electrochemical activity of MoS2 and the good conductivity of CF synergistically lead to a remarkable conversion efficiency of 9,5 % in fibrous dye-sensitized solar cells.

The fibrous electrode can be used simultaneously in various energy harvesting and storage applications, e.g., as an integrated self-powering energy fiber by combining a fibrous dye-sensitized solar cell and a supercapacitor part on a single CF@TiO2@MoS2 electrode. Furthermore, it is shown that this electrode can be used for fibrous lithium ion batteries as well as for electrocatalytic hydrogen evolution reactions.


Article Views: 1059

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from, please contact us first for permission. more

CONNECT: on Facebook on Twitter on YouTube on LinkedIn Sign up for our free newsletter

A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH