Hydrogen Bond or Halogen Bond?

  • Author: ChemistryViews.org
  • Published: 07 June 2017
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Source / Publisher: Chemical Science/Royal Society of Chemistry (RSC)
thumbnail image: Hydrogen Bond or Halogen Bond?

In the well-known hydrogen bonds, a positively charged hydrogen atom interacts with an electron donor (pictured top). They are among the strongest and most important intermolecular interactions. In halogen bonds, on the other hand, a halogen atom, usually iodine, acts in similar fashion (pictured bottom). In a three-component system, there can be a competition between the formation of hydrogen bonds and halogen bonds.


Robin N. Perutz, University of York, Christopher A. Hunter, University of Cambridge, Lee Brammer, University of Sheffield, all UK, and colleagues have studied the effects of solvents on this competition. The team observed the effect of seven different solvents, from polar i-propanol to nonpolar toluene, on the assembly of co-crystals from mixtures of 1,4-diiodotetrafluorobenzene, hydroquinone derivatives, and 1,2-bis(4-pyridyl)ethane. These molecules each feature two acceptor or donor groups and can form linear networks, stabilized by hydrogen or halogen bonds. The iodo- and hydroxy-groups compete for interaction with the pyridine nitrogen atoms.


The researchers found that in nonpolar solvents, the formation of hydrogen-bonded co-crystals is preferred, while in polar solvents, halogen-bonded co-crystals are formed. This can be attributed to the fact that polar solvents weaken hydrogen bonds in solution and favor the formation of halogen-bonded co-crystals. When the hydrogen-bond interaction is stronger, e.g., with fluorinated hydroquinone derivatives, the solvent needs to be more polar to cause this effect. According to the researchers, the solvent-control of intermolecular interactions could be important for other areas of self-assembly and molecular recognition, not just co-crystallization.


 

Article Views: 1471

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH