Making Hollow Iron Oxide Nanocapsules

  • Author: Liam Critchley
  • Published: 13 September 2018
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: ACS Nano/ACS Publications
  • Associated Societies: American Chemical Society (ACS), USA
thumbnail image: Making Hollow Iron Oxide Nanocapsules

The creation of tailored inorganic nanoparticles not only relies on the crystalline structure, but also the size, shape, and morphology of the particles. Tailoring nanoparticles with well-defined properties has been a synthetic challenge. One approach for this is topotactic conversion, i.e., structural changes to a crystalline solid which may include loss or gain of material and, in this case, can convert nanoparticles to a different structure and composition.


Beth S. Guiton, University of Kentucky, Lexington, USA, and colleagues have created hollow nanostructures by decomposing β-FeOOH nanorods (NRs) into various hollow iron oxide nanocapsules. The NRs were synthesized via a hydrothermal method. When annealing the β-FeOOH NRs in air at 500–700 °C, α-Fe2O3 capsules were formed. In a high-vacuum environment, depending on the annealing temperature, phase transformations from β-FeOOH to β-Fe2O3, γ-Fe2O3, Fe3O4, and FeO were observed during the hollowing process.


The researchers were able to track the morphological progress and the nanocapsule formation using in-situ transmission electron microscopy (TEM)—from the initial morphology through a series of metastable intermediate phases to a final thermodynamically stable phase. The method of formation of the nanocapsules has been termed "shell-induced Ostwald ripening". Even though all routes produced hollowed-out nanocapsules, the specific route of formation for the final morphology was found to be highly dependent on the crystal structure of the starting material.


 

Article Views: 814

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH