Linking Pore Networks with Catalytic Performance

  • Author: Dimitra Chatzitheodoridou
  • Published: 16 November 2018
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Nature Chemistry/Springer Nature Limited
thumbnail image: Linking Pore Networks with Catalytic Performance

Porous materials have a variety of industrial, environmental, and health applications, ranging from catalysis to medical diagnosis. They contain a complex network of macro- (>50 nm), meso- (2–50 nm) and micropores (< 2 nm). The pore size distribution, accessibility, and interconnectivity of the porous domains directly relate to the catalytic performance of a porous material.


Visualizing the pore architecture and associating it with the materials’ functionality could enable the design of more efficient catalysts with a high product selectivity and a long lifetime. So far, however, a visual correlation between pore network and functionality under realistic conditions had not been realized.


Bert M. Weckhuysen, Utrecht University, The Netherlands, and colleagues have applied confocal fluorescence microscopy to establish a visual relationship between the pore accessibility and interconnectivity of industrial catalysts and their performance under realistic conditions. Clay-bound ZSM-5 zeolites (structure pictured) were used to catalyze the conversion of methanol to hydrocarbons. This process produces light-absorbing carbocations that were excited with a laser beam and visualized using a confocal fluorescence microscope.


The researchers established a direct relationship between pore architecture, molecular transport, and catalyst deactivation. They found that larger regions of accessibility increased the amount of larger products, which over time led to the deactivation of the catalyst. Besides heterogeneous catalysis, the proposed approach could also be used for the investigation of porous materials used in other areas, such as drug delivery systems, batteries, or membranes.


 

Article Views: 847

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH