Directed Evolution Used to Create Chiral Lactams

  • Author: Marek Czykanski
  • Published: 12 May 2019
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Source / Publisher: Science/American Association for the Advancement of Science (AAAS)
thumbnail image: Directed Evolution Used to Create Chiral Lactams

Frances H. Arnold and colleagues, California Institute of Technology (Caltech), Pasadena, CA, USA, have used directed evolution to engineer cytochrome P450 enzymes that perform novel enantioselective C‒H amidation reactions to create chiral β-, γ-, and δ-lactams. The enzymes were expressed in Escherichia coli cells. Each enzyme generates a different lactam.

The enzymes turn C–H bonds of acyl-protected hydroxamate precursors into C–N bonds. First, reactive iron-bound carbonyl nitrenes are formed. These carbonyl nitrenes undergo an intramolecular C–H amidation reaction to create the lactams. The enzymes direct the amidation to the desired C–H position and simultaneously prevent side reactions. Isolation of most products was achieved simply by filtering from the aqueous reaction mixture.

According to the researchers, their transformation is very efficient and selective. Moreover, it can easily be used on a preparative scale in drug synthesis.


Article Views: 1551

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from, please contact us first for permission. more

CONNECT: on Facebook on Twitter on YouTube on LinkedIn Sign up for our free newsletter

Magazine of Chemistry Europe (16 European Chemical Societies)published by Wiley-VCH