Hydrogen Evolution Catalysts Can Be Used for Organic Reactions

  • Author: ChemistryViews.org
  • Published: 13 June 2019
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Dalton Transactions/Royal Society of Chemistry
  • Associated Societies: Royal Society of Chemistry (RSC), UK
thumbnail image: Hydrogen Evolution Catalysts Can Be Used for Organic Reactions

There is a large amount of research on hydrogen evolution catalysts. This is due to the hope that they could enable a sustainable, hydrogen-based fuel economy. However, molecular hydrogen evolution catalysts are not yet useable on a large, industrial scale. These catalysts are designed to perform the reduction of protons to dihydrogen. This might make it possible to use them for other, smaller-scale reactions: reductions in organic chemistry.


Cobalt bis-iminopyridines, for example, are low-cost molecular hydrogen evolution catalysts. John Fielden, University of East Anglia, UK, and colleagues have used cobalt bis-iminopyridine derivatives for the reduction of acetonitrile to ethylamine. The team synthesized two Co complexes: [Co(DDP)(H2O)2](NO3)2 (pictured, DDP = cis-[1,3-bis(2-pyridinylenamine)]cyclohexane)) and [Co(cis-DDOP)(NO3)](NO3) (cis-DDOP = cis-3,5-bis[(2-pyridinyleneamin]-trans-hydroxycyclohexane)). The complexes were prepared by mixing the ligands with cobalt(II) nitrate in methanol.


The team found that [Co(DDP)(H2O)2](NO3)2 can electrocatalyze the reduction of acetonitrile to ethylamine. This reaction is favored over the production of dihydrogen. [Co(cis-DDOP)(NO3)](NO3), in contrast, favors H2 production. The researchers attribute this effect to the hydroxy group in the second catalyst, which coordinates to cobalt and makes it more difficult to coordinate acetonitrile during the reaction. According to the team, this work shows that catalysts designed for hydrogen evolution could have alternative uses in organic chemistry.


 

Article Views: 528

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH