Imaging Hexagonal Boron Nitride with Stimulated Raman Scattering

  • Author: Liam Critchley
  • Published: 20 December 2019
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: ACS Nano/ACS Publications
  • Associated Societies: American Chemical Society (ACS), USA
thumbnail image: Imaging Hexagonal Boron Nitride with Stimulated Raman Scattering

Hexagonal boron nitride (h-BN)—also known as "white graphene"—is an important 2D material. It can be used as an effective insulator material, e.g., in optoelectronic and nanoelectronic devices. Unlike graphene, h-BN has a very weak Raman signal. This is a problem as Raman spectroscopy is one of the most commonly used methods for analyzing the properties of graphene and similar materials. It, thus, makes it more challenging to quantify the properties—such as thickness, doping, and strain effects—of 2D h-BN samples.


To overcome this, Minbiao Ji, Liwu Zhang, Zhengzong Sun, and colleagues at Fudan University, China, used stimulated Raman scattering (SRS) to enhance the Raman-active E2g vibration mode of h-BN. The team also used coherent Raman scattering (CRS) and coherent anti-Stokes Raman scattering (CARS) to analyze the samples. In contrast to "normal" Raman spectroscopy, SRS involves a second laser beam with a different frequency that enhances the signal.


The team was able to characterize h-BN sheets with SRS in a rapid process that creates high-resolution images. The intensity of the SRS signal was found to depend linearly on the h-BN thickness, which allowed the researchers to determine the flake thickness.


 

 

Article Views: 1389

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)published by Wiley-VCH