More Stable High-Capacity Cathode Material for Lithium-Ion Batteries

  • Author: Verena Langowski
  • Published: 13 January 2020
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: ACS Energy Letters/ACS Publishing
  • Associated Societies: American Chemical Society (ACS), USA
thumbnail image: More Stable High-Capacity Cathode Material for Lithium-Ion Batteries

High capacity electrode materials are essential for lithium-ion batteries. In theory, layered vanadium pentoxide (α-V2O5) as a cathode material has a very high specific capacity, but its practical use has been limited until now. A layer consists of threads of VO5 square pyramids connected at two edges, with only weak interactions between the layers. When used in a battery, lithium-ions occupy interstitial sites in the structure. The material undergoes several phase transitions during this process and finally reacts irreversibly to another compound. This leads to poor cycling stability.

WenWu Zhong, Taizhou University, China, Shuquan Liang, Jun Liu, Central South University, Changsha, China, and Jun Liu, Pacific Northwest National Laboratory, Richland, Washington, USA, and colleagues have developed Li0.0625V2O5 nanobelts with increased stability. First, the researchers made α-V2O5 nanobelts (NBs) from commercial V2O5 powder via a hydrothermal route. The V2O5-NB slurry was then treated with LiCl in a secondary hydrothermal step. The structure, morphology, and the electrochemical properties of this nanomaterial were analysed.

X-ray powder diffraction (XRD) measurements revealed that a lithium-ordered superstructure of α-V2O5 with the formula Li0.0625V2O5 had formed. Eight α-V2O5 unit cells form this superstructure, with only one unit cell carrying a single interstitial lithium-ion. Cyclic voltammetry showed the ordinary peaks of lithium-insertion and additionally, two new pairs of reversible pseudocapacitive S-peaks. This means a bigger lithium-storage capacity.

In fact, the Li0.0625V2O5 NBs have a very high specific capacity up to 215 mAh g–1 and a high cycling capacity with no capacity fade after 1000 cycles at 1 C. The new material moreover shows a rate capability with a high specific capacity of 140 mAh g–1 at 20 C. According to the researchers, future battery research could benefit a lot from the improved stability and high power of this material.


 

Article Views: 887

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)published by Wiley-VCH