Cross-Electrophile Coupling of Alkyl and Aryl Chlorides

  • Author: ChemistryViews.org
  • Published: 29 June 2020
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Journal of the American Chemical Society/ACS Publications
  • Associated Societies: American Chemical Society (ACS), USA
thumbnail image: Cross-Electrophile Coupling of Alkyl and Aryl Chlorides

Conventional cross-coupling reactions usually take place between an electrophile and an organometallic reagent. In cross-electrophile couplings, in contrast, the coupling partners are both electrophiles. Cross-electrophile couplings generally use alkyl bromides, -iodides, or -sulfonates as substrates, while simple alkyl chlorides are almost never used. Alkyl chlorides could be low-cost, low-toxicity, stable alternatives to the commonly used substrate types. However, their stability also makes them hard to activate using common nickel or photoredox catalysis approaches.


David W. C. MacMillan, Princeton University, NJ, USA, and colleagues have developed the first cross-electrophile coupling of unactivated alkyl chlorides and aryl chlorides (example reaction pictured). The team designed a new organosilane reagent, whose properties are specifically tuned to allow chlorine abstraction from alkyl chlorides, TMS3SiNH(ad) (ad = adamantyl). This reagent was used together with a nickel catalyst (NiCl2·BIm, BIm = 2,2'-biimidazole), an iridium photocatalyst ([Ir(ppy)2(dtbbpy)]PF6; ppy = 2-phenylpyridine, dtbbpy = 4,​4'-​bis(tert-butyl)​-​2,​2'-​bipyridine), and 1,1,3,3-tetramethylguanidine (TMG) as base under visible-light irradiation using a blue LED at 55 °C.


Under these conditions, the researchers coupled a range of unactivated alkyl chlorides with a variety of (hetero)aryl chlorides. The desired coupling products were obtained in good yields. The reaction tolerates electrophilic functional groups such as esters, nitriles, and ketones on the alkyl chloride partner. It works well with both electron-rich and electron-deficient chlorobenzene derivatives, as well as with several heteroarenes, such as chloropyridines or -pyrimidines. The approach can, for example, be used for the synthesis of several pharmaceutically active compounds.


 

 

 

 

 

Article Views: 562

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


Magazine of Chemistry Europe (16 European Chemical Societies)published by Wiley-VCH