Encapsulation of Contrast Agents for MRI

  • Author: Lisa-Marie Rauschendorfer
  • Published: 15 January 2016
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Source / Publisher: Advanced Healthcare Materials/Wiley-VCH
thumbnail image: Encapsulation of Contrast Agents for MRI

Magnetic resonance imaging (MRI) is based on the phenomenon that the spins of protons in water orientate themselves in a strong external magnetic field. If the magnetic field is switched off, the protons relax back to their native state. This relaxation is measurable and different tissues have characteristic relaxation times (T1) depending on their respective water content. The difference in T1 values is one reason for contrast in MR images. In order to enhance the contrast, paramagnetic metal ions, such as gadolinium(III), are used. High local concentrations of the contrast agent in the body part of interest are key.

Katharina Landfester, Max Planck Institute of Polymer Research, Mainz, Germany, and colleagues increased the local contrast agent concentration by encapsulation of Gd(III)-complexes (Gadobutrol) in polyurea nanocapsules. Unfortunately, these capsules also restrict the contact between contrast agent and its surroundings, and the positive effect on T1 diminishes.

The team found that the proton exchange between surrounding water and the contrast agent capsule is an essential process influencing T1. They tested different aliphatic diamines as polymer building blocks for the capsules and found a high proton exchange rate for diaminobutane (DAB). Gadobutrol encapsulated in DAB leads to an even shorter T1 than an aqueous solution of this contrast agent. A subsequent in vivo study also showed an improved contrast.


Article Views: 2441

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter

A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH