
1 Molecular Orbital Theory

1.1 The Atomic Orbitals of a Hydrogen Atom

To understand the nature of the simplest chemical bond, that between two hydrogen atoms, we look at the

effect on the electron distribution when two atoms are held within bonding distance, but first we need a

picture of the hydrogen atoms themselves. Since a hydrogen atom consists of a proton and a single electron,

we only need a description of the spatial distribution of that electron. This is usually expressed as a wave

function �, where �2dt is the probability of finding the electron in the volume dt, and the integral of �2dt
over the whole of space is 1. The wave function is the underlying mathematical description, and it may be

positive or negative; it can even be complex with a real and an imaginary part, but this will not be needed in

any of the discussion in this book. Only when squared does it correspond to anything with physical reality—

the probability of finding an electron in any given space. Quantum theory12 gives us a number of permitted

wave equations, but the only one that matters here is the lowest in energy, in which the distribution of the

electron is described as being in a 1s orbital. This is spherically symmetrical about the nucleus, with a

maximum at the centre, and falling off rapidly, so that the probability of finding the electron within a sphere

of radius 1.4 Å is 90 % and within 2 Å better than 99%. This orbital is calculated to be 13.60 eV lower in

energy than a completely separated electron and proton.

We need pictures to illustrate the electron distribution, and the most common is simply to draw a circle,

Fig. 1.1a, which can be thought of as a section through a spherical contour, within which the electron would

be found, say, 90 % of the time. This picture will suffice for most of what we need in this book, but it might be

worth looking at some others, because the circle alone disguises some features that are worth appreciating.

Thus a section showing more contours, Fig. 1.1b, has more detail. Another picture, even less amenable to a

quick drawing, is to plot the electron distribution as a section through a cloud, Fig. 1.1c, where one imagines

blinking one’s eyes a very large number of times, and plotting the points at which the electron was at each

blink. This picture contributes to the language often used, in which the electron population in a given volume

of space is referred to as the electron density.
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Fig. 1.1 The 1s atomic orbital of a hydrogen atom
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Taking advantage of the spherical symmetry, we can also plot the fraction of the electron population

outside a radius r against r, as in Fig. 1.2a, showing the rapid fall off of electron population with distance. The

van der Waals radius at 1.2 Å has no theoretical significance—it is an empirical measurement from solid-

state structures, being one-half of the distance apart of the hydrogen atom in a C—H bond and the hydrogen

atom in the C—H bond of an adjacent molecule.13 It does not even have a fixed value, but is an average of

several measurements. Yet another way to appreciate the electron distribution is to look at the radial density,

where we plot the probability of finding the electron between one sphere of radius r and another of radius

rþ dr. This has a revealing form, Fig. 1.2b, with a maximum 0.529 Å from the nucleus, showing that, in spite

of the wave function being at a maximum at the nucleus, the chance of finding an electron precisely there is

very small. The distance 0.529 Å proves to be the same as the radius calculated for the orbit of an electron in

the early but untenable planetary model of a hydrogen atom. It is called the Bohr radius a0, and is often used

as a unit of length in molecular orbital calculations.

1.2 Molecules Made from Hydrogen Atoms

1.2.1 The H2 Molecule

To understand the bonding in a hydrogen molecule, we have to see what happens when two hydrogen atoms are

close enough for their atomic orbitals to interact. We now have two protons and two nuclei, and even with this

small a molecule we cannot expect theory to give us complete solutions. We need a description of the electron

distribution over the whole molecule—a molecular orbital. The way the problem is handled is to accept that a

first approximation has the two atoms remaining more or less unchanged, so that the description of the

molecule will resemble the sum of the two isolated atoms. Thus we combine the two atomic orbitals in a

linear combination expressed in Equation 1.1, where the function which describes the new electron distribu-

tion, the molecular orbital, is called � and �1 and �2 are the atomic 1s wave functions on atoms 1 and 2.

� ¼ c1�1 þ c2�2 1:1

The coefficients, c1 and c2, are a measure of the contribution which the atomic orbital is making to the

molecular orbital. They are of course equal in magnitude in this case, since the two atoms are the same, but

they may be positive or negative. To obtain the electron distribution, we square the function in Equation 1.1,

which is written in two ways in Equation 1.2.

�2 ¼ c1�1 þ c2�2ð Þ2 ¼ c1�1ð Þ2 þ c2�2ð Þ2 þ 2c1�1c2�2 1:2

P
0.8

0.6

0.4

0.2

1.0

1Å 2Å

4 r 2 (r)

rr
Fraction of charge-cloud
outside a sphere of radius r

Radial density for the ground
state hydrogen atom

van der Waals radius

1Å 2Å

a0

)b()a(

Fig. 1.2 Radial probability plots for the 1s orbital of a hydrogen atom
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Taking the expanded version, we can see that the molecular orbital �2 differs from the superposition of

the two atomic orbitals (c1�1)2þ(c2�2)2 by the term 2c1�1c2�2. Thus we have two solutions (Fig. 1.3). In

the first, both c1 and c2 are positive, with orbitals of the same sign placed next to each other; the electron

population between the two atoms is increased (shaded area), and hence the negative charge which these

electrons carry attracts the two positively charged nuclei. This results in a lowering in energy and is

illustrated in Fig. 1.3, where the horizontal line next to the drawing of this orbital is placed low on the

diagram. In the second way in which the orbitals can combine, c1 and c2 are of opposite sign, and, if there

were any electrons in this orbital, there would be a low electron population in the space between the nuclei,

since the function is changing sign. We represent the sign change by shading one of the orbitals, and we

call the plane which divides the function at the sign change a node. If there were any electrons in this

orbital, the reduced electron population between the nuclei would lead to repulsion between them; thus, if

we wanted to have electrons in this orbital and still keep the nuclei reasonably close, energy would have to

be put into the system. In summary, by making a bond between two hydrogen atoms, we create two new

orbitals, � and �*, which we call the molecular orbitals; the former is bonding and the latter antibonding

(an asterisk generally signifies an antibonding orbital). In the ground state of the molecule, the two

electrons will be in the orbital labelled �. There is, therefore, when we make a bond, a lowering of energy

equal to twice the value of E� in Fig. 1.3 (twice the value, because there are two electrons in the bonding

orbital).

The force holding the two atoms together is obviously dependent upon the extent of the overlap in the

bonding orbital. If we bring the two 1s orbitals from a position where there is essentially no overlap

at 3 Å through the bonding arrangement to superimposition, the extent of overlap steadily increases.

The mathematical description of the overlap is an integral S12 (Equation 1.3) called the overlap

integral, which, for a pair of 1s orbitals, rises from 0 at infinite separation to 1 at superimposition

(Fig. 1.4).

S12 ¼
ð
�1�2dt 1:3

The mathematical description of the effect of overlap on the electronic energy is complex, but some of the

terminology is worth recognising, and will be used from time to time in the rest of this book. The energy E of
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Fig. 1.3 The molecular orbitals of hydrogen
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an electron in a bonding molecular orbital is given by Equation 1.4 and for the antibonding molecular orbital

is given by Equation 1.5:

E¼�þ �
1þ S

1:4

E¼�� �
1� S

1:5

in which the symbol � represents the energy of an electron in an isolated atomic orbital, and is called a

Coulomb integral. The function represented by the symbol� contributes to the energy of an electron in the field

of both nuclei, and is called the resonance integral. It is roughly proportional to S, and so the overlap integral

appears in the equations twice. It is important to realise that the use of the word resonance does not imply an

oscillation, nor is it exactly the same as the ‘resonance’ of valence bond theory. In both cases the word is used

because the mathematical form of the function is similar to that for the mechanical coupling of oscillators. We

also use the words delocalised and delocalisation to describe the electron distribution enshrined in the �
function—unlike the words resonating and resonance, these are not misleading, and are the better words to use.

The function � is a negative number, lowering the value of E in Equation 1.4 and raising it in Equation 1.5.

In this book, � will not be given a sign on the diagrams on which it is used, because the sign can be

misleading. The symbol � should be interpreted as |�|, the positive absolute value of �. Since the diagrams

are always plotted with energy upwards and almost always with the � value visible, it should be obvious

which � values refer to a lowering of the energy below the � level, and which to raising the energy above it.

The overall effect on the energy of the hydrogen molecule relative to that of two separate hydrogen atoms

as a function of the internuclear distance is given in Fig. 1.5. If the bonding orbital is filled (Fig. 1.5a), the

energy derived from the electronic contribution (Equation 1.4) steadily falls as the two hydrogen atoms are

moved from infinity towards one another (curve A). At the same time the nuclei repel each other ever more

strongly, and the nuclear contribution to the energy goes steadily up (curve B). The sum of these two is the

familiar Morse plot (curve C) for the relationship between internuclear distance and energy, with a minimum

at the bond length. If we had filled the antibonding orbital instead (Fig. 1.5b), there would have been no

change to curve B. The electronic energy would be given by Equation 1.5 which provides only a little

shielding between the separated nuclei giving at first a small curve down for curve A, and even that would

change to a repulsion earlier than in the Morse curve. The resultant curve, C, is a steady increase in energy as

the nuclei are pushed together. The characteristic of a bonding orbital is that the nuclei are held together,

whereas the characteristic of an antibonding orbital, if it were to be filled, is that the nuclei would fly apart

unless there are enough compensating filled bonding orbitals. In hydrogen, having both orbitals occupied is

overall antibonding, and there is no possibility of compensating for a filled antibonding orbital.

HHH H H H

+1

0.5

1Å 2Å 3Å

S

rH-H

Fig. 1.4 The overlap integral S for two 1sH orbitals as a function of internuclear distance
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We can see from the form of Equations 1.4 and 1.5 that the term � relates to the energy levels of the

isolated atoms labelled 1sH in Fig. 1.3, and the term � to the drop in energy labelled E� (and the rise labelled

E�*). Equations 1.4 and 1.5 show that, since the denominator in the bonding combination is 1þ S and the

denominator in the antibonding combination is 1 – S, the bonding orbital is not as much lowered in energy as

the antibonding is raised. In addition, putting two electrons into a bonding orbital does not achieve exactly

twice the energy-lowering of putting one electron into it. We are allowed to put two electrons into the one

orbital if they have opposite spins, but they still repel each other, because they have to share the same space;

consequently, in forcing a second electron into the � orbital, we lose some of the bonding we might otherwise

have gained. For this reason too, the value of E� in Fig. 1.3 is smaller than that of E�*. This is why two helium

atoms do not combine to form an He2 molecule. There are four electrons in two helium atoms, two of which

would go into the �-bonding orbital in an He2 molecule and two into the �*-antibonding orbital. Since 2E�*

is greater than 2E�, we would need extra energy to keep the two helium atoms together.

Two electrons in the same orbital can keep out of each other’s way, with one electron on one side of the

orbital, while the other is on the other side most of the time, and so the energetic penalty for having a second

electron in the orbital is not large. This synchronisation of the electrons’ movements is referred to as electron

correlation. The energy-raising effect of the repulsion of one electron by the other is automatically included

in calculations based on Equations 1.4 and 1.5, but each electron is treated as having an average distribution

with respect to the other. The effect of electron correlation is often not included, without much penalty in

accuracy, but when it is included the calculation is described as being with configuration interaction, a bit of

fine tuning sometimes added to a careful calculation.

The detailed form that � and � take is where the mathematical complexity appears. They come from the

Schrödinger equation, and they are integrals over all coordinates, represented here simply by dt, in the form

of Equations 1.6 and 1.7:

� ¼
ð
�1H�1dt 1:6

� ¼
ð
�1H�2dt 1:7
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Fig. 1.5 Electronic attraction, nuclear repulsion and the overall effect as a function of internuclear distance for two

1sH atoms
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where H is the energy operator known as a Hamiltonian. Even without going into this in more detail, it is

clear how the term � relates to the atom, and the term � to the interaction of one atom with another.

As with atomic orbitals, we need pictures to illustrate the electron distribution in the molecular orbitals. For

most purposes, the conventional drawings of the bonding and antibonding orbitals in Fig. 1.3 are clear

enough—we simply make mental reservations about what they represent. In order to be sure that we do

understand enough detail, we can look at a slice through the two atoms showing the contours (Fig. 1.6). Here we

see in the bonding orbital that the electron population close in to the nucleus is pulled in to the midpoint

between the nuclei (Fig. 1.6a), but that further out the contours are an elliptical envelope with the nuclei as the

foci. The antibonding orbital, however, still has some dense contours between the nuclei, but further out the

electron population is pushed out on the back side of each nucleus. The node is half way between the nuclei,

with the change of sign in the wave function symbolised by the shaded contours on the one side. If there were

electrons in this orbital, their distribution on the outside would pull the nuclei apart—the closer the atoms get,

the more the electrons are pushed to the outside, explaining the rise in energy of curve A in Fig. 1.5b.

We can take away the sign changes in the wave function by plotting �2 along the internuclear axis, as in

Fig. 1.7. The solid lines are the plots for the molecular orbitals, and the dashed lines are plots, for comparison,

of the undisturbed atomic orbitals �2. The electron population in the bonding orbital (Fig. 1.7a) can be seen to

be slightly contracted relative to the sum of the squares of the atomic orbitals, and the electron population

(a) bonding (b) * antibonding
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Fig. 1.7 Plots of the square of the wave function for the molecular orbitals of H2 (solid lines) and its component atomic

orbitals (dashed lines). [The atomic orbital plot is scaled down by a factor of 2 to allow us to compare �2 with the sum of

the atomic densities (�1
2þ�2

2)/2]

(a) The σ-bonding orbital (b) The σ*-antibonding orbital

Fig. 1.6 Contours of the wave function of the molecular orbitals of H2
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between the nuclei is increased relative to that sum, as we saw when we considered Equation 1.2. In the

antibonding orbital (Fig. 1.7b) it is the other way round, if there were electrons in the molecular orbital, the

electron population would be slightly expanded relative to a simple addition of the squares of the atomic

orbitals, and the electron population between the nuclei is correspondingly decreased.

Let us return to the coefficients c1 and c2 of Equation 1.1, which are a measure of the contribution which

each atomic orbital is making to the molecular orbital (equal in this case). When there are electrons in the

orbital, the squares of the c-values are a measure of the electron population in the neighbourhood of the atom

in question. Thus in each orbital the sum of the squares of all the c-values must equal one, since only one

electron in each spin state can be in the orbital. Since |c1| must equal |c2| in a homonuclear diatomic like H2,

we have defined what the values of c1 and c2 in the bonding orbital must be, namely 1/
p

2¼ 0.707:

c1 c2

0.707 –0.707

0.707 0.707

 = 1.000

 = 1.000

σ*

σ

Σc2 Σc2

Σc2

Σc2

 = 1.000  = 1.000

If all molecular orbitals were filled, then there would have to be one electron in each spin state on each

atom, and this gives rise to a second criterion for c-values, namely that the sum of the squares of all the c-

values on any one atom in all the molecular orbitals must also equal one. Thus the �*-antibonding orbital of

hydrogen will have c-values of 0.707 and –0.707, because these values make the whole set fit both criteria.

Of course, we could have taken c1 and c2 in the antibonding orbital the other way round, giving c1 the

negative sign and c2 the positive.

This derivation of the coefficients is not strictly accurate—a proper normalisation involves the overlap

integral S, which is present with opposite sign in the bonding and the antibonding orbitals (see Equations 1.4

and 1.5). As a result the coefficients in the antibonding orbitals are actually slightly larger than those in the

bonding orbital. This subtlety need not exercise us at the level of molecular orbital theory used in this book,

and it is not a problem at all in Hückel theory, which is what we shall be using for p systems. We can,

however, recognise its importance when we see that it is another way of explaining that the degree of

antibonding from the antibonding orbital (E�* in Fig. 1.3) is greater than the degree of bonding from the

bonding orbital (E�).

1.2.2 The H3 Molecule

We might ask whether we can join more than two hydrogen atoms together. We shall consider first the

possibility of joining three atoms together in a triangular arrangement. It presents us for the first time with

the problem of how to account for three atoms forming bonds to each other. With three atomic orbitals

to combine, we can no longer simply draw an interaction diagram as we did in Fig. 1.3, where there were only

two atomic orbitals. One way of dealing with the problem is first to take two of them together. In this case,

we take two of the hydrogen atoms, and allow them to interact to form a hydrogen molecule, and then we

combine the � and �* orbitals, on the right of Fig. 1.8, with the 1s orbital of the third hydrogen atom on

the left.

We now meet an important rule: we are only allowed to combine those orbitals that have the same

symmetry with respect to all the symmetry elements present in the structure of the product and in the orbitals

of the components we are combining. This problem did not arise in forming a bond between two identical

hydrogen atoms, because they have inherently the same symmetry, but now we are combining different sets
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of orbitals with each other. The need to match, and to maintain, symmetry will become a constant refrain as the

molecules get more complex. The first task is to identify the symmetry elements, and to classify the orbitals

with respect to them. Because all the orbitals are s orbitals, there is a trivial symmetry plane in the plane of the

page, which we shall label throughout this book as the xz plane. We can ignore it, and other similar symmetry

elements, in this case. The only symmetry element that is not trivial is the plane in what we shall call the yz

plane, running from top to bottom of the page and rising vertically from it. The � orbital and the 1s orbital are

symmetric with respect to this plane, but the �* orbital is antisymmetric, because the component atomic

orbitals are out of phase. We therefore label the orbitals as S (symmetric) or A (antisymmetric).

The � orbital and the 1s orbital are both S and they can interact in the same way as we saw in Fig. 1.3, to

create a new pair of molecular orbitals labelled �1 and �2*. The former is lowered in energy, because all the

s orbitals are of the same sign, and the latter is raised in energy, because there is a node between the top

hydrogen atom and the two bottom ones. The latter orbital is antibonding overall, because there are two

antibonding interactions between hydrogen atoms and only one bonding interaction. As it happens, its

energy is the same as that of the �* orbital, but we cannot justify that fully now. In any case, the other

orbital �* remains unchanged in the H3 molecule, because there is no orbital of the correct symmetry to

interact with it.

Thus we have three molecular orbitals, just as we had three atomic orbitals to make them from. Whether

we have a stable ‘molecule’ now depends upon how many electrons we have. If we have two in H3
þ, in other

words a protonated hydrogen molecule, they would both go into the �1 orbital, and the molecule would have

a lower electronic energy than the separate proton and H2 molecule. If we had three electrons H3• from

combining three hydrogen atoms, we would also have a stable ‘molecule’, with two electrons in �1 and only

one in �2*, making the combination overall more bonding than antibonding. Only with four electrons in H3
–

is the overall result of the interaction antibonding, because the energy-raising interaction is, as usual, greater

than the energy-lowering interaction. This device of building up the orbitals and only then feeding the

electrons in is known as the aufbau method.

We could have combined the three atoms in a straight line, pulling the two lower hydrogen atoms in

Fig. 1.8 out to lay one on each side of the upper atom. Since the symmetries do not change, the result would

have been similar (Fig. 1.9). There would be less bonding in �1 and �2*, because the overlap between the two

lower hydrogen atoms would be removed. There would also be less antibonding from the �* orbital, since it

would revert to having the same energy as the two more or less independent 1s orbitals.

1sH
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0 nodes

1 node

H H

H

H H

H

H H

H
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yz

S

S

AA

H H

H H 2*

1

z

y

x

H

H

Fig. 1.8 Interacting orbitals for H3
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1.2.3 The H4 ‘Molecule’

There are even more possible ways of arranging four hydrogen atoms, but we shall limit ourselves to

tetrahedral, since we shall be using these orbitals later. This time, we combine them in pairs, as in Fig. 1.3, to

create two hydrogen molecules, and then we ask ourselves what happens to the energy when the two

hydrogen molecules are held within bonding distance, one at right angles to the other.

We can keep one pair of hydrogen atoms aligned along the x axis, on the right in Fig. 1.10, and orient the

other along the y axis, on the left of Fig. 1.10. The symmetry elements present are then the xz and yz planes.

The bonding orbital �x on the right is symmetric with respect to both planes, and is labelled SS. The

antibonding orbital �x* is symmetric with respect to the xz plane but antisymmetric with respect to the yz

plane, and is accordingly labelled SA. The bonding orbital �y on the left is symmetric with respect to both

planes, and is also labelled SS. The antibonding orbital �y* is antisymmetric with respect to the xz plane but

symmetric with respect to the yz plane, and is labelled AS. The only orbitals with the same symmetry are

therefore the two bonding orbitals, and they can interact to give a bonding combination �1 and an antibonding

combination �2*. As it happens, the latter has the same energy as the unchanged orbitals �x* and �y*. This is

not too difficult to understand: in the new orbitals �1 and �2*, the coefficients c, will be (ignoring the full

x

x*
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H H

2*
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z

y

x

H H
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H H
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Fig. 1.10 The orbitals of tetrahedral H4
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Fig. 1.9 Relative energies for the orbitals of triangular and linear H3
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treatment of normalisation) 0.5 instead of 0.707, in order that the sum of their squares shall be 1. In the

antibonding combination �2*, there are two bonding relationships between hydrogen atoms, and four anti-

bonding relationships, giving a net value of two antibonding combinations, compared with the one in each of

the orbitals �x* and �y*. However the antibonding in the orbital �2* is between s orbitals with coefficients of

1/
p

4, and two such interactions is the same as one between orbitals with coefficients of 1/
p

2 (see Equation

1.3, and remember that the change in electronic energy is roughly proportional to the overlap integral S).

We now have four molecular orbitals, �1, �2*, �x* and �y*, one lowered in energy and one raised relative

to the energy of the orbitals of the pair of hydrogen molecules. If we have four electrons in the system, the net

result is repulsion, as usual when two filled orbitals combine with each other. Thus two H2 molecules do not

combine to form an H4 molecule. This is an important conclusion, and is true no matter what geometry we

use in the combination. It is important, because it shows us in the simplest possible case why molecules exist,

and why they largely retain their identity—when two molecules approach each other, the interaction of their

molecular orbitals usually leads to this repulsion. Overcoming the repulsion is a prerequisite for chemical

reaction and the energy needed is a major part of the activation energy.

1.3 C—H and C—C Bonds

1.3.1 The Atomic Orbitals of a Carbon Atom

Carbon has s and p orbitals, but we can immediately discount the 1s orbital as contributing to bonding,

because the two electrons in it are held so tightly in to the nucleus that there is no possibility of significant

overlap with this orbital—the electrons simply shield the nucleus, effectively giving it less of a positive

charge. We are left with four electrons in 2s and 2p orbitals to use for bonding. The 2s orbital is like the 1s

orbital in being spherically symmetrical, but it has a spherical node, with a wave function like that shown in

Fig. 1.11a, and a contour plot like that in Fig. 1.11b. The node is close to the nucleus, and overlap with the

inner sphere is never important, making the 2s orbital effectively similar to a 1s orbital. Accordingly, a 2s

orbital is usually drawn simply as a circle, as in Fig. 1.11c. The overlap integral S of a 1s orbital on hydrogen

with the outer part of the 2s orbital on carbon has a similar form to the overlap integral for two 1s orbitals in

Fig. 1.4 (except that it does not rise as high, is at a maximum at greater atomic separation, and would not

reach unity at superimposition). The 2s orbital on carbon, at –19.5 eV, is 5.9 eV lower in energy than the 1s

orbital in hydrogen. The attractive force on the 2s electrons is high because the nucleus has six protons, even

though this is offset by the greater average distance of the electrons from the nucleus and by the shielding

from the other electrons. Slater’s rules suggest that the two 1s electrons reduce the nuclear charge by 0.85

atomic charges each, and the other 2s and the two 2p electrons reduce it by 3 � 0.35 atomic charges, giving

the nucleus an effective charge of 3.25.

1 1 2Å2Å

C

(a) Wave function of a 2s
orbital on carbon

(b) Contours for the wave
function

(c) Conventional representation

2s

r

Fig. 1.11 The 2s atomic orbital on carbon
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The 2p orbitals on carbon also have one node each, but they have a completely different shape. They point

mutually at right angles, one each along the three axes, x, y and z. A plot of the wave function for the 2px

orbital along the x axis is shown in Fig. 1.12a, and a contour plot of a slice through the orbital is shown in

Fig. 1.12b. Scale drawings of p orbitals based on the shapes defined by these functions would clutter up any

attempt to analyse their contribution to bonding, and so it is conventional to draw much narrower lobes, as in

Fig. 1.12c, and we make a mental reservation about their true size and shape. The 2p orbitals, at –10.7 eV, are

higher in energy than the 2s, because they are held on average further from the nucleus. When wave functions

for all three p orbitals, px, py and pz, are squared and added together, the overall electron probability has

spherical symmetry, just like that in the corresponding s orbital, but concentrated further from the nucleus.

Bonds to carbon will be made by overlap of s orbitals with each other, as they are in the hydrogen

molecule, of s orbitals with p orbitals, and of p orbitals with each other. The overlap integrals S between a p

orbital and an s or p orbital are dependent upon the angles at which they approach each other. The overlap

integral for a head on approach of an s orbital on hydrogen along the axis of a p orbital on carbon with a lobe

of the same sign in the wave function (Fig. 1.13a), leading to a � bond, grows as the orbitals begin to overlap

(D), goes through a maximum when the nuclei are a little over 0.9 Å apart (C), falls fast as some of the s

orbital overlaps with the back lobe of the p orbital (B), and goes to zero when the s orbital is centred on the

carbon atom (A). In the last configuration, whatever bonding there would be from the overlap with the lobe

of the same sign (unshaded lobes are conventionally used to represent a positive sign in the wave function) is

exactly cancelled by overlap with the lobe (shaded) of opposite sign in the wave function. Of course this

1 12Å

0.5

–0.5

2p

r x-axis

(a) Wave function of a 2px
orbital on carbon

(b) Contours for the wave
function

(c) Conventional representation

2Å 1.5Å

1Å

1Å

1.5Å

Fig. 1.12 A 2px atomic orbital on carbon
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(a) Overlap integral for overlap of
a p orbital on C with an s orbital on H

S

1Å 2Å rC-C 3Å

0.5

(b) Overlap integral for
overlap of two p orbitals on C

G

F

E

Fig. 1.13 Overlap integrals for � overlap with a p orbital on carbon
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configuration is never reached, in chemistry at least, since the nuclei cannot coincide. The overlap integral

for two p orbitals approaching head-on in the bonding mode with matching signs (Fig. 1.13b) begins to grow

when the nuclei approach (G), rises to a maximum when they are about 1.5 Å apart (F), falls to zero as

overlap of the front lobes with each other is cancelled by overlap of the front lobes with the back lobes (E),

and would fall eventually to –1 at superimposition. The signs of the wave functions for the individual s and p

atomic orbitals can get confusing, which is why we adopt the convention of shaded and unshaded. The signs

will not be used in this book, except in Figs. 1.17 and 1.18, where they are effectively in equations.

In both cases, s overlapping with p and p overlapping with p, the overlap need not be perfectly head-on for

some contribution to bonding to be still possible. For imperfectly aligned orbitals, the integral is inevitably

less, because the build up of electron population between the nuclei, which is responsible for holding the

nuclei together, is correspondingly less; furthermore, since the overlapping region will also be off centre, the

nuclei are less shielded from each other. The overlap integral for a 1s orbital on hydrogen and a 2p orbital on

carbon is actually proportional to the cosine of the angle of approach �, where � is 0� for head-on approach

and 90� if the hydrogen atom is in the nodal plane of the p orbital.

1.3.2 Methane

In methane, there are eight valence electrons, four from the carbon and one each from the hydrogen atoms,

for which we need four molecular orbitals. We can begin by combining two hydrogen molecules into a

composite H4 unit, and then combine the orbitals of that species (Fig. 1.10) with the orbitals of the carbon

atom. It is not perhaps obvious where in space to put the four hydrogen atoms. They will repel each other, and

the furthest apart they can get is a tetrahedral arrangement. In this arrangement, it is still possible to retain

bonding interactions between the hydrogen atoms and the carbon atoms in all four orbitals, as we shall see,

and the maximum amount of total bonding is obtained with this arrangement.

We begin by classifying the orbitals with respect to the two symmetry elements, the xz plane and the yz

plane. The symmetries of the molecular orbitals of the H4 ‘molecule’ taken from Fig. 1.10 are placed on the

left in Fig. 1.14, but the energies of each are now close to the energy of an isolated 1s orbital on hydrogen,

because the four hydrogen atoms are now further apart than we imagined them to be in Fig. 1.10. The s and p
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H
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Fig. 1.14 The molecular orbitals of methane constructed from the interaction of the orbitals of tetrahedral H4 and a

carbon atom
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orbitals on the single carbon atom are shown on the right. There are two SS orbitals on each side, but the overlap

integral for the interaction of the 2s orbital on carbon with the �2* orbital is zero—there is as much bonding with

the lower lobes as there is antibonding with the upper lobes. This interaction leads nowhere. We therefore have

four interactions, leading to four bonding molecular orbitals (shown in Fig. 1.14) and four antibonding (not

shown). One is lower in energy than the others, because it uses overlap from the 2s orbital on carbon, which is

lower in energy than the 2p orbitals. The other three orbitals are actually equal in energy, just like the component

orbitals on each side, and the four orbitals are all we need to accommodate the eight valence electrons. There will

be, higher in energy, a corresponding set of antibonding orbitals, which we shall not be concerned with for now.

In this picture, the force holding any one of the hydrogen atoms bonded to the carbon is derived from more

than one molecular orbital. The two hydrogen atoms drawn below the carbon atom in Fig. 1.14 have bonding

from the low energy orbital made up of the overlap of all the s orbitals, and further bonding from the orbitals,

drawn on the upper left and upper right, made up from overlap of the 1s orbital on the hydrogen with the 2pz and

2px orbitals on carbon. These two hydrogen atoms are in the node of the 2py orbital, and there is no bonding to

them from the molecular orbital in the centre of the top row. However, the hydrogens drawn above the carbon

atom, one in front of the plane of the page and one behind, are bonded by contributions from the overlap of their

1s orbitals with the 2s, 2py and 2pz orbitals of the carbon atom, but not with the 2px orbital.

Fig. 1.14 uses the conventional representations of the atomic orbitals, revealing which atomic orbitals

contribute to each of the molecular orbitals, but they do not give an accurate picture of the resulting electron

distribution. A better picture can be found in Jorgensen’s and Salem’s pioneering book, The Organic

Chemist’s Book of Orbitals,14 which is also available as a CD.15 There are also several computer programs

which allow you easily to construct more realistic pictures. The pictures in Fig. 1.15 come from one of these,

Jaguar, and show the four filled orbitals of methane. The wire mesh drawn to represent the outline of each

molecular orbital shows one of the contours of the wave function, with the signs symbolised by light and

heavier shading. It is easy to see what the component s and p orbitals must have been, and for comparison the

four orbitals are laid out here in the same way as those in Fig. 1.14.

1.3.3 Methylene

Methylene, CH2, is not a molecule that we can isolate, but it is a well known reactive intermediate with a bent

H—C—H structure, and in that sense is a ‘stable’ molecule. Although more simple than methane, it brings us

for the first time to another feature of orbital interactions which we need to understand. We take the orbitals

Fig. 1.15 One contour of the wave function for the four filled molecular orbitals of methane
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of a hydrogen molecule from Fig. 1.3 and place them on the left of Fig. 1.16, except that again the atoms are

further apart, so that the bonding and antibonding combination have relatively little difference in energy. On

the right are the atomic orbitals of carbon. In this case we have three symmetry elements: (i) the xz plane,

bisecting all three atoms; (ii) the yz plane, bisecting the carbon atom, and through which the hydrogen atoms

reflect each other; and (iii) a two-fold rotation axis along the z coordinate, bisecting the H—C—H angle. The

two orbitals, �HH and �*HH in Fig. 1.16, are SSS and SAA with respect to these symmetry elements, and

the atomic orbitals of carbon are SSS, SSS, ASA and SAA. Thus there are two orbitals on the right and one on

the left with SSS symmetry, and the overlap integral is positive for the interactions of the �HH and both the 2s

and 2pz orbitals, so that we cannot have as simple a way of creating a picture as we did with methane, where

one of the possible interactions had a zero overlap integral.

In more detail, we have three molecular orbitals to create from three atomic orbitals, and the linear

combination is Equation 1.8, like Equation 1.1 but with three terms:

�¼ c1�1 þ c2�2 þ c3�3 1:8

Because of symmetry, |c1| must equal |c3|, but |c2| can be different. On account of the energy difference, it

only makes a small contribution to the lowest-energy orbital, as shown in Fig. 1.17, where there is a small

p lobe, in phase, buried inside the s orbital �s. It would show in a full contour diagram, but does not intrude in

a simple picture like that in Fig. 1.16. The second molecular orbital up in energy created from this

interaction, the �z orbital, is a mix of the �HH orbital, the 2s orbital on carbon, out of phase, and the 2pz

orbital, in phase, which has the effect of boosting the upper lobe, and reducing the lower lobe. There is then a

third orbital higher in energy, shown in Fig. 1.17 but not in Fig. 1.16, antibonding overall, with both the 2s

and 2pz orbitals out of phase with the �HH orbital. Thus, we have created three molecular orbitals from three

atomic orbitals.

Returning to Fig. 1.16, the other interaction, between the �*HH orbital and its SAA counterpart, the 2px

orbital, gives a bonding combination �x and an antibonding combination (not shown). Finally, the remaining

p orbital, 2py with no orbital of matching symmetry to interact with, remains unchanged, and, as it happens,

unoccupied.

If we had used the linear arrangement H—C—H, the �x orbital would have had a lower energy, because the

overlap integral, with perfect head-on overlap (�¼ 0�), would be larger, but the �z orbital would have made

no contribution to bonding, since the H atoms would have been in the node of the p orbital. This orbital would
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Fig. 1.16 The molecular orbitals of methylene constructed from the interaction of the orbitals of H2 and a carbon atom
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simply have been a new orbital on carbon, half way between the s and p orbitals, making no contribution to

bonding, and the overall lowering in energy would be less than for the bent structure.

We do not actually need to combine the orbitals of the two hydrogen atoms before we start. All we need to

see is that the combinations of all the available s and p orbitals leading to the picture in Fig. 1.16 will account

for the bent configuration which has the lowest energy. Needless to say, a full calculation, optimising the

bonding, comes to the same conclusion. Methylene is a bent molecule, with a filled orbital of p character,

labelled �z, bulging out in the same plane as the three atoms. The orbital �s made up largely from the s

orbitals is lowest in energy, both because the component atomic orbitals start off with lower energy, and

because their combination is inherently head-on. An empty py orbital is left unused, and this will be the

lowest in energy of the unfilled orbitals—it is nonbonding and therefore lower in energy than the various

antibonding orbitals created, but not illustrated, by the orbital interactions shown in Fig. 1.16.

1.3.4 Hybridisation

One difficulty with these pictures, explaining the bonding in methane and in methylene, is that there is no

single orbital which we can associate with the C—H bond. To avoid this inconvenience, chemists often use

Pauling’s idea of hybridisation; that is, they mix together the atomic orbitals of the carbon atom, adding the s

and p orbitals together in various proportions, to produce a set of hybrids, before using them to make the

molecular orbitals. We began to do this in the account of the orbitals of methylene, but the difference now is

that we do all the mixing of the carbon-based orbitals first, before combining them with anything else.

Thus one-half of the 2s orbital on carbon can be mixed with one-half of the 2px orbital on carbon, with its

wave function in each of the two possible orientations, to create a degenerate pair of hybrid orbitals, called sp

hybrids, leaving the 2py and 2pz orbitals unused (Fig. 1.18, top). The 2s orbital on carbon can also be mixed

with the 2px and 2pz orbitals, taking one-third of the 2s orbital in each case successively with one-half of the

2px and one-sixth of the 2pz in two combinations to create two hybrids, and with the remaining two-thirds of

the 2pz orbital to make the third hybrid. This set is called sp2 (Fig. 1.18, centre); it leaves the 2py orbital

unused at right angles to the plane of the page. The three hybrid orbitals lie in the plane of the page at angles

of 120� to each other, and are used to describe the bonding in trigonal carbon compounds. For tetrahedral

carbon, the mixing is one-quarter of the 2s orbital with one-half of the 2px and one-quarter of the 2pz orbital,

in two combinations, to make one pair of hybrids, and one quarter of the 2s orbital with one-half of the 2py

and one-quarter of the 2pz orbital, also in two combinations, to make the other pair of hybrids, with the set of

four called sp3 hybrids (Fig. 1.18, bottom).
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Fig. 1.17 Interactions of a 2s and 2pz orbital on carbon with the �HH orbital with the same symmetry
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The conventional representations of hybrid orbitals used in Fig. 1.18 are just as misleading as the conven-

tional representations of the p orbitals from which they are derived. A more accurate picture of the sp3 hybrid

is given by the contours of the wave function in Fig. 1.19. Because of the presence of the inner sphere in the

2s orbital (Fig. 1.11a), the nucleus is actually inside the back lobe, and a small proportion of the front

lobe reaches behind the nucleus. This follows from the way a hybrid is constructed by adding one-quarter of

the wave function of the s orbital (Fig. 1.11a) and three-quarters in total of the wave functions of the p orbitals

(Fig. 1.12a). As usual, we draw the conventional hybrids relatively thin, and make the mental reservation that

they are fatter than they are usually drawn.
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The interaction of the 1s orbital of a hydrogen atom with an sp3 hybrid on carbon can be used in the usual

way to create a �CH bonding orbital and a �*CH antibonding orbital (Fig. 1.20). Four of the bonding orbitals,

each with two electrons in it, one from each of the four hybrids, point towards the corners of a regular

tetrahedron, and give rise to the familiar picture for the bonds in methane shown in Fig. 1.21a.

This picture has the advantage over that in Fig. 1.14 that the C—H bonds do have a direct relationship with

the lines drawn on the conventional structure (Fig. 1.21b). The bonds drawn in Fig. 1.14 do not represent

anything material but without them the picture would be hard to interpret. The two descriptions of the overall

wave function for methane are in fact identical; hybridisation involves the same approximations, and the

taking of s and p orbitals in various proportions and various combinations, as those used to arrive at the

picture in Fig. 1.14. For many purposes it is wise to avoid localising the electrons in the bonds, and to use

pictures like Fig. 1.14. This is what most theoreticians do when they deal with organic molecules, and it is

what the computer programs will produce. It is also, in most respects, a more realistic model. Measurements

of ionisation potentials, for example, show that there are two energy levels from which electrons may be

removed; this is immediately easy to understand in Fig. 1.14, where there are filled orbitals of different

energy, but the picture of four identical bonds from Fig. 1.20 hides this information.

For other purposes, however, it is undoubtedly helpful to take advantage of the simple picture provided by

the hybridisation model, even though hybridisation is an extra concept to learn. It immediately reveals, for

example, that all four bonds are equal. It can be used whenever it offers a simplification to an argument as we

shall find later in this book, but it is good practice to avoid it wherever possible. In particular, the common

H H

H H

(a) The sp3 hybrids on carbon overlapping with
the s orbitals of hydrogen

(b) Conventional bonds

H H

H H

Fig. 1.21 Methane built up using sp3 hybridised orbitals
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Fig. 1.20 Bonding and antibonding orbitals of a C—H bond
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practice of referring to a molecule or an atom as ‘rehybridising’ is not good usage—the rehybridisation in

question is in our picture, not in the molecule. It is likewise poor (but unfortunately common) practice to

refer to atoms as being sp3, sp2 or sp hybridised. Again the atoms themselves are not, in a sense, hybridised, it

is we who have chosen to picture them that way. It is better in such circumstances to refer to the atoms as

being tetrahedral, trigonal, or digonal, as appropriate, and allow for the fact that the bonds around carbon

(and other) atoms may not have exactly any of those geometries.

1.3.5 C—C s Bonds and p Bonds: Ethane

With a total of fourteen valence electrons to accommodate in molecular orbitals, ethane presents a more

complicated picture, and we now meet a C—C bond. We will not go into the full picture—finding the

symmetry elements and identifying which atomic orbitals mix to set up the molecular orbitals. It is easy

enough to see the various combinations of the 1s orbitals on the hydrogen atoms and the 2s, 2px, 2py and 2pz

orbitals on the two carbon atoms giving the set of seven bonding molecular orbitals in Fig. 1.22.

There is of course a corresponding picture using sp3 hybrids, but the following account shows how easy it is to

avoid them. We shall concentrate for the moment on those orbitals which give rise to the force holding the two

carbon atoms together; between them they make up the C—C bond. The molecular orbitals (�s and �s0), made up
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Fig. 1.22 The bonding orbitals and three antibonding orbitals of ethane
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largely from 2s orbitals on carbon, are very like the orbitals in hydrogen, in that the region of overlap is directly on

a line between the carbon nuclei; as before, they are called � orbitals. The bonding in the lower one is very strong,

but it is somewhat offset by the antibonding (as far as the C—C bond is concerned) in the upper one. They are both

strongly bonding with respect to the C—H bonds. There is actually a little of the 2px orbital mixed in with this

orbital, just as we saw in Fig. 1.17 with a 2pz orbital, but most of the 2px orbital contributes to the molecular orbital

�x, which is also � in character, and very strong as far as the C—C bond is concerned. This orbital has a little of the

2s orbital mixed in, resulting in the asymmetric extension of the lobes between the two carbon nuclei and a

reduction in size of the outer lobes. This time, its antibonding counterpart (�*x) is not involved in the total bonding

of ethane, nor is it bonding overall. It is in fact the lowest-energy antibonding orbital.

In the molecular orbitals using the 2py and 2pz orbitals of carbon, the lobes of the atomic orbitals overlap

sideways on. This is the distinctive feature of what is called p bonding, although it may be unfamiliar to meet this

type of bonding in ethane. Nevertheless, let us see where it takes us. The conventional way of drawing a p orbital

(Fig. 1.12c) is designed to give elegant and uncluttered drawings, like those in Fig. 1.22, and is used throughout this

book for that reason. A better picture as we have already seen, and which we keep as a mental reservation when

confronted with the conventional drawings, is the contour diagram (Fig. 1.12b). With these pictures in mind, the

overlap sideways-on can be seen to lead to an enhanced electron population between the nuclei. However, since it is

no longer directly on a line between the nuclei, it does not hold the carbon nuclei together as strongly as a�-bonding

orbital. The overlap integral S for two p orbitals with a dihedral angle of zero has the form shown in Fig. 1.23, where

it can be compared with the corresponding� overlap integral taken from Fig. 1.13b. Whereas the� overlap integral

goes through a maximum at about 1.5 Å and then falls rapidly to a value of –1, the p overlap integral rises more

slowly but reaches unity at superimposition. Since C—C single bonds are typically about 1.54 Å long, the overlap

integral at this distance forp bonding is a little less than half that for� bonding.pBonds are therefore much weaker.

Returning to the molecular orbitals in ethane made from the 2py and 2pz orbitals, we see that they again fall in

pairs, a bonding pair (py and pz) and (as far as C—C bonding is concerned, but not overall) an antibonding pair

(py0 and pz0). These orbitals have the wrong symmetry to have any of the 2s orbital mixed in with them. The

electron population in the four orbitals (py, pz, py0 and pz0) is higher in the vicinity of the hydrogen atoms than in

the vicinity of the carbon atoms, and these orbitals mainly contribute to the strength of the C—H bonds, towards

which all four orbitals are bonding. The amount both of bonding and antibonding that they contribute to the

C—C bond is small, with the bonding and antibonding combinations more or less cancelling each other out.

Thus the orbital (�x) is the most important single orbital making up the C—C bond. We can construct for it an

interaction diagram (Fig. 1.24), just as we did for the H—H bond in Fig. 1.3. The other major contribution to C—C

bonding comes from the fact that �s is more C—C bonding than �s0 is C—C antibonding, as already mentioned.
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Fig. 1.23 Comparison of overlap integrals for p and � bonding of p orbitals on C
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Had we used the concept of hybridisation, the C—C bond would, of course, simply have been seen as

coming from the bonding overlap of sp3 hybridised orbitals on carbon with each other, and the overall picture

for the C—C bond would have looked very similar to �x in Fig. 1.24, except that it would have used different

proportions of s and p orbitals, and would have been labelled sp3. For simplicity, we shall often discuss the

orbitals of � bonds as though they could be localised into bonding and antibonding orbitals like �x and �x*.

We shall not often need to refer to the full set of orbitals, except when they become important for one reason

or another. Any property we may in future attribute to the bonding and antibonding orbitals of a � bond, as

though there were just one such pair, can always be found in the full set of all the bonding orbitals, or they can

be found in the interaction of appropriately hybridised orbitals.

1.3.6 C=C p Bonds: Ethylene

The orbitals of ethylene are made up from the 1s orbitals of the four hydrogen atoms and the 2s, 2px, 2py and 2pz

orbitals of the two carbon atoms (Fig. 1.25). One group, made up from the 1s orbitals on hydrogen and the 2s, 2px

and 2py orbitals on carbon, is substantially � bonding, which causes the orbitals to be relatively low in energy.

These five orbitals with ten of the electrons make up what we call the � framework. Standing out, higher in

energy than the�-framework orbitals, is a filled orbital made up entirely from the 2pz orbitals of the carbon atom

overlapping in a p bond. This time, the p orbital is localised on the carbon atoms with no mixing in of the 1s

orbitals on the hydrogen atoms, which all sit in the nodal plane of the pz orbital. The bonding in this orbital gives

greater strength to the C—C bonding in ethylene than the p orbitals give to the C—C bonding in ethane, which is

one reason why we talk of ethylene as having a double bond. Nevertheless, the C—C � bonding in the �
framework is greater than the p bonding from overlap of the two pz orbitals. This is because, other things being

equal, p overlap is inherently less effective in lowering the energy than � overlap. Thus in the interaction

diagram for ap bond (Fig. 1.26), the drop in energy Ep fromp bonding is less than E� in Fig. 1.24 for comparable

� bonding, and this follows from the larger overlap integral for � approach than for p approach (Fig. 1.23).

Similarly, Ep* in Fig. 1.26 is less than E�* in Fig. 1.24. Another consequence of having an orbital localised

on two atoms is that the equation for the linear combination of atomic orbitals contains only two terms

(Equation 1.1), and the c-values are again 0.707 in the bonding orbital and 0.707 and –0.707 in the

antibonding orbital. In simple Hückel theory, the energy of the p orbital on carbon is given the value �,

which is used as a reference point from which to measure rises and drops in energy, and will be especially

useful when we come to deal with other elements. The value of Ep in Fig. 1.26 is given the symbol �, and is

also used as a reference with which to compare the degree of bonding in other p-bonding systems. To give a

sense of scale, its value for ethylene is approximately 140 kJ mol–1 (¼ 1.45 eV¼ 33 kcal mol–1). In other

words the total p bonding in ethylene is 280 kJ mol–1, since there are two electrons in the bonding orbital.
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Fig. 1.24 A major part of the C—C � bond of ethane
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This separation of the � framework and the p bond is the essence of Hückel theory. Because the p bond in

ethylene in this treatment is self-contained, free of any complications from involvement with the hydrogen

atoms, we may treat the electrons in it in the same way as we do for the fundamental quantum mechanical

picture of an electron in a box. We look at each molecular wave function as one of a series of sine waves. In

these simple molecules we only have the two energy levels, and so we only need to draw an analogy between

them and the two lowest levels for the electron in the box. The convention is to draw the limits of the box one

bond length out from the atoms at the end of the conjugated system, and then inscribe sine waves so that a node

always comes at the edge of the box. With two orbitals to consider for the p bond of ethylene, we only need the

180� sine curve for p and the 360� sine curve for p*. These curves can be inscribed over the orbitals as they are

on the left of Fig. 1.27, and we can see on the right how the vertical lines above and below the atoms duplicate

the pattern of the coefficients, with both c1 and c2 positive in the p orbital, and c1 positive and c2 negative in p*.

The drawings of the p orbitals in Figs. 1.26 and 1.27 have the usual problem of being schematic. A better

picture as we have already seen, and which we keep as a mental reservation when confronted with the

pz

*

pz
E
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Fig. 1.26 A C¼C p bond
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Fig. 1.25 The bonding orbitals and one antibonding orbital of ethylene
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conventional drawings, is the contour diagram (Fig. 1.12b). A better sense of the overlap from two side-by-

side p orbitals is given in Fig. 1.28, where we see more clearly that in the bonding combination, even

sideways-on, there is enhanced electron population between the nuclei, but that it is no longer directly on a

line between the nuclei. The wire-mesh diagrams in Fig. 1.29, illustrate the shapes of the p and p* orbitals

even better, with some sense of their 3D character.

Fig. 1.28 A section through the contours of the p and p* wave functions of ethylene

c2

c1

*
c2

c1

Fig. 1.27 The p orbitals of ethylene and the electron in the box

Fig. 1.29 Wire-mesh outlines of one contour of the p and p* wave functions of ethylene
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1.4 Conjugation—Hückel Theory16,17

The interaction of atomic orbitals giving rise to molecular orbitals is the simplest type of conjugation. Thus

in ethylene the two p orbitals can be described as being conjugated with each other to make the p bond. The

simplest extension to make longer conjugated systems is to add one p orbital at a time to the p bond to make

successively the p components of the allyl system with three carbon atoms, of butadiene with four, of the

pentadienyl system with five, and so on. Hückel theory applies, because in each case we separate completely

the p system from the � framework, and we can continue to use the electron-in-the-box model.

1.4.1 The Allyl System

The members of the allyl system are reactive intermediates rather than stable molecules, and there are three

of them: the allyl cation 1.1, the allyl radical 1.2 and the allyl anion 1.3. They have the same � framework and

the same p orbitals, but different numbers of electrons in the p system.

1.1 1.2 1.3

3 1

2

It is necessary to make a mental reservation about the diagrams 1.1–1.3, so commonly used by organic

chemists. These diagrams are localised structures that seem to imply that C-1 has the positive charge (an

empty p orbital), the odd electron (a half-filled p orbital) or the negative charge (a filled p orbital),

respectively, and that C-2 and C-3 are in a double bond in each case. However, we could have drawn the

cation 1.1, redrawn as 1.4a, equally well the other way round as 1.4b, and the curly arrow symbolism shows

how the two drawings are interconvertible. This device is at the heart of valence bond theory. For now we

need only to recognise that these two drawings are representations of the same species—there is no reaction

connecting them, although many people sooner or later fall into the trap of thinking that ‘resonance’ like 1.4a

! 1.4b is a step in a reaction sequence. The double-headed arrow interconnecting them is a useful signal;

this symbol should be used only for interconnecting ‘resonance structures’ and never to represent an

equilibrium There are corresponding pairs of drawings for the radical 1.5a and 1.5b and for the anion 1.6a

and 1.6b.

1.4a 1.4b 1.4c

1.5a 1.5b 1.5c

1.6a 1.6b 1.6c

One way of avoiding these misleading structures is to draw the allyl cation, radical or anion as in 1.4c, 1.5c and

1.6c, respectively, illustrating the delocalisation of the p orbitals with a dashed line, and placing the positive or

negative charge in the middle. The trouble with these drawings is that they are hard to use clearly with curly

arrows in mechanistic schemes, and they do not show that the positive charge in the cation, the odd electron in

the radical or the negative charge in the anion are largely concentrated on C-1 and C-3, the very feature that the

drawings 1.4a and 1.4b, 1.5a and 1.5b and 1.6a and 1.6b illustrate so well. We shall see that the drawings with
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apparently localised charges 1.4a, 1.4b, 1.5a and 1.5b and 1.6a and 1.6b illustrate not only the overall p
electron distribution but also the important frontier orbital. It is probably better in most situations to use one of

the localised drawings rather than any of the ‘molecular orbital’ versions 1.4c, 1.5c or 1.6c, and then make the

necessary mental reservation that each of the localised drawings implies the other.

C C
C
H

H
H

H
H

1.7

The allyl cation, radical and anion have the same � framework 1.7, with 14 bonding molecular orbitals

filled with 28 electrons made by mixing the 1s orbitals of the five hydrogen atoms either with the sp2 hybrids

or with the 2s, 2px and 2py orbitals of the three carbon atoms. The allyl systems are bent not linear, but we

shall treat them as linear to simplify the discussion. The x, y and z coordinates have to be redefined as local x,

y and z coordinates, different at each atom, in order to make this simplification, but this leads to no

complications in the general story.

As with ethylene, we keep the � framework separate from the p system, which is made up from the three pz

orbitals on the carbon atoms that were not used in making the � framework. The linear combination of these

orbitals takes the form of Equation 1.9, with three terms, creating a pattern of three molecular orbitals, 1, 2 and

 3*, that bear some resemblance to the set we saw in Section 1.3.3 for methylene. In the allyl cation there are two

electrons left to go into thep system after filling the � framework (and in the radical, three, and in the anion, four).

 ¼c1�1 þ c2�2 þ c3�3 1:9

We can derive a picture of these orbitals using the electron in the box, recognising that we now have three

orbitals and therefore three energy levels. If the lowest energy orbital is, as usual, to have no nodes (except

the inevitable one in the plane of the molecule), and the next one up one node, we now need an orbital with

two nodes. We therefore construct a diagram like that of Fig. 1.27, but with one more turn of the sine curve, to

include that for 540�, the next one up in energy that fulfils the criterion that there are nodes at the edges of the

box, one bond length out, as well as the two inside (Fig. 1.30).

The lowest-energy orbital,  1, has bonding across the whole conjugated system, with the electrons

concentrated in the middle. Because of the bonding, this orbital will be lower in energy than an isolated p

c1

c1

c1

0.500

0.707

c2

c2

c2 c3

c3

c3

0.707

–0.707

0.500 0.500

0.500

–0.707
3*

2

1

Fig. 1.30 The p orbitals of the allyl system
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orbital. The next orbital up in energy  2, is different from those we have met so far. Its symmetry demands

that the node be in the middle; but this time the centre of the conjugated system is occupied by an atom and

not by a bond. Having a node in the middle means having a zero coefficient c2 on C-2, and hence the

coefficients on C-l and C-3 in this orbital must be –1/
p

2, if, squared and summed, they are to equal one. The

atomic orbitals in 2 are so far apart in space that their repulsive interaction does not, to a first approximation,

raise the energy of this molecular orbital relative to that of an isolated p orbital. In consequence, whether

filled or not, it does not contribute to the overall bonding. If the sum of the squares of the three orbitals on C-2

is also to equal one, then the coefficients on C-2 in  1 and  3* must also be –1/
p

2. Finally, since symmetry

requires that the coefficients on C-1 and C-3 in 1 and 3* have the same absolute magnitude, and the sum of

their squares must equal 1–(1/
p

2)2, we can deduce the unique set of c-values shown in Fig. 1.30. A pattern

present in the allyl system because of its symmetry is seen with other symmetrical conjugated systems: the |c|

values are reflected across a mirror plane placed horizontally, half way up the set of orbitals, between  1 and

 3*, and also across a mirror plane placed vertically, through C-2. It is only necessary therefore to calculate

four of the nine numbers in Fig. 1.30, and deduce the rest from the symmetry.

In this picture of the bonding, we get no immediate appreciation of the energies of these orbitals relative to

those of ethylene. The nonbonding orbital  2 is clearly on the � level, that of a p orbital on carbon, and  1 is

lowered by the extra p bonding and  3* is raised. To assess the energies, there is a simple geometrical device

that works for linear conjugated systems. The conjugated system, including the dummy atoms at the ends of

the sine curves, is inscribed vertically inside a circle of radius 2�, following the convention that one p bond in

ethylene defines �. This is shown for ethylene and the allyl system in Fig. 1.31, where the dummy atoms are

marked as dots at the top and bottom of the circle. The energies E of the p orbitals can then be calculated

using Equation 1.10:

E ¼ 2� cos
kp

nþ 1
1:10

where k is the number of the atom along the sequence of n atoms. This is simply an expression based on the

trigonometry of Fig. 1.31, where, for example, the p orbital of ethylene is placed on the first atom (k¼ 1) of

the sequence of two (n¼ 2) reading anticlockwise from the bottom. Thus the energies of the p orbitals in the

allyl system are 1.414� below the � level and 1.414� above the � level.

We can gain further insight by building the picture of the p orbitals of the allyl system in another way.

Instead of mixing together three p orbitals on carbon, we can combine two of them in a p bond first, as in

Fig. 1.26, and then work out the consequences of having a third p orbital held within bonding distance of

metsyslyllaehtenelyhte

1

2

*
3*

1.414

1.414

/3

0

1

2

3

Fig. 1.31 Energies of p molecular orbitals in ethylene and the allyl system
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the C¼C p bond. Although Fig. 1.26, and all the interaction diagrams for single bonds, illustrated the

bonding orbital as less bonding than the antibonding orbital is antibonding, this detail confuses the simple

picture for conjugated systems that we want to build up here, and is left out of the discussion. We have to

consider the effect of the p orbital, on the right of Fig. 1.32 on both the p and p* orbitals of ethylene on the

left. If we look only at the interaction with the p orbital, we can expect to create two new orbitals in much

the same way as we saw when the two 2pz orbitals of carbon were allowed to interact in the formation of

the p bond of Fig. 1.26. One orbital  1 will be lowered in energy and the other  x raised. Similarly if we

look only at its interaction with the p* orbital, we can expect to create two new orbitals, one lowered in

energy  y and one raised  3*. We cannot create four orbitals from three, because we cannot use the p

orbital separately twice.

We can see in Fig. 1.32 that the orbital  1 has been created by mixing the p orbital with the p orbital in a

bonding sense, with the signs of the wave function of the two adjacent atomic orbitals matching. We can also

see that the orbital  3* has been created by mixing the p orbital with the p* orbital in an antibonding sense,

with the signs of the wave functions unmatched. The third orbital that we are seeking,  2 in Fig. 1.33, is a

combination created by mixing the p orbital with the p orbital in an antibonding sense and with the p* orbital

in a bonding sense. We do not get the two orbitals,  x and  y in Fig. 1.32, but something half way between,

namely  2 in Fig. 1.33. By adding  x and  y in this way, the atomic orbitals drawn to the left of the energy

levels labelled  x and  y in Fig. 1.32 cancel each other out on C-2 and reinforce each other on C-1 and C-3,

thereby creating the molecular orbital  2 in Fig. 1.33.

We have of course arrived at the same picture for the molecular orbitals as that created from mixing the

three separate p orbitals in Fig. 1.30. As before, the atomic orbitals in  2 are far enough apart in space for the

molecular orbital  2 to have the same energy as the isolated p orbital in Fig. 1.33. It is a nonbonding

molecular orbital (NBMO), as distinct from a bonding ( 1) or an antibonding ( 3*) orbital. Again we see for

the allyl cation, radical and anion, that, as a result of the overlap in 1, the overall p energy of the allyl system

has dropped relative to the sum of the energies of an isolated p orbital and of ethylene by 2E, which we know

from Fig. 1.31 is 2 � 0.414� or something of the order of 116 kJ mol–1 of extra p bonding relative to that in

pC

*

3*

1

y

x

Fig. 1.32 A p orbital interacting independently with p and p* orbitals. (No attempt is made to represent the relative

sizes of the atomic orbitals)
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ethylene. In the radical and anion, where  2 has either one or two electrons, and  3* is still empty, the energy

drop is still 2E, because p and 2 are essentially on the same level. (It is not uncommon to express these drops

in energy as a ‘gain’ in energy—in this sense, the gain is understood to be to us, or to the outside world, and

hence means a loss of energy in the system and stronger bonding.)

It is worth considering at this stage what the overall p electron distribution will be in this conjugated

system. The electron population in any molecular orbital is derived from the square of the atomic orbital

functions, so that the sine waves describing the coefficients in Fig. 1.34a are squared to describe the electron

distribution in Fig. 1.34b. The p electron population in the molecule as a whole is then obtained by adding up

the electron populations, allowing for the number of electrons in each orbital, for all the filled p molecular

orbitals. Looking only at the p system, we can see that the overall p electron distribution for the cation is

pC

*

3*

1

2

E

Fig. 1.33 The allyl system by interaction of a p orbital with p and p* orbitals
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Fig. 1.34 Wave functions and electron population for the allyl orbitals
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derived from the squares of the coefficients in  1 alone, since this is the only populated p orbital. Roughly

speaking, there is half an electron (2 � 0.52) on each of C-1 and C-3, and one electron (2 � 0.7072) on

C-2. This is illustrated graphically in Fig. 1.35a. Since the nucleus has a charge of þ1, the excess charge on

C-1 and C-3 is þ0.5, in other words the electron deficiency in the cation is concentrated at the two ends.

For the anion, the p electron population is derived by adding up the squares of the coefficients in both  1

and  2. Since there are two electrons in both orbitals, there are 1.5 electrons (2 � 0.52þ 2 � 0.7072)

roughly centred on each of C-1 and each of C-3, and one electron (2 � 0.7072) centred on C-2. This is

illustrated graphically in Fig. 1.35b. Subtracting the charge of the nucleus then gives the excess charge as

–0.5 on C-1 and C-3, in other words the electron excess in the anion is concentrated at the two ends. Thus the

drawings of the allyl cation 1.4a and 1.4b illustrate the overall p electron population, and the corresponding

drawings for the anion 1.6a and 1.6b do the same for that species.

As we shall see later, the most important orbitals with respect to reactivity are the highest occupied

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). These are the frontier

orbitals. For the allyl cation, the HOMO is 1, and the LUMO is 2. For the allyl anion, the HOMO is 2, and

the LUMO is  3*. The drawings of the allyl cation 1.4a and 1.4b emphasise not only the overall p electron

population but even better emphasise the electron distribution in the LUMO. Similarly, the drawings of the

allyl anion 1.6a and 1.6b emphasise the HOMO for that species. It is significant that it is the LUMO of the

cation and the HOMO of the anion that will prove to be the more important frontier orbital in each case. In

radicals, the most important orbital is the singly occupied molecular orbital (SOMO). For the allyl radical

this is the half-filled orbital  2. Once again, the drawings 1.5a and 1.5b emphasise the distribution of the odd

electron in this orbital.

One final detail with respect to this, the most important orbital, is that it is not quite perfectly nonbonding.

Although C-1 and C-3 are separated in space, they do interact slightly in  2, as can be seen in the wire-mesh

drawing of the nonlinear allyl system in Fig. 1.36, where the perspective allows one to see that the right hand

0.50 0.50 0.10.1 1.50 1.50

(a) electron population in the allyl cation (b) electron population in the allyl anion

2 1
2 2 1

2 + 2 2
2

Fig. 1.35 Total p electron populations in the allyl cation and anion

ψ 1 ψ 2 ψ 3*

Fig. 1.36 The p molecular orbitals of the allyl system
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lobes, which are somewhat closer to the viewer, are just perceptibly repelled by the left hand lobes, and that

neither of the atomic orbitals on C-1 and C-3 in  2 is a straightforwardly symmetrical p orbital. This orbital

does not therefore have exactly the same energy as an isolated p orbital—it is slightly higher in energy.

1.4.2 Butadiene

The next step up in complexity comes with four p orbitals conjugated together, with butadiene 1.8 as the parent

member. As usual there is a � framework 1.9, which can be constructed from the 1s orbitals of the six

hydrogen atoms and either the sp2 hybrids of the four carbon atoms or the separate 2s, 2px and 2py orbitals. The

� framework has 18 bonding molecular orbitals filled with 36 electrons. Again we have two ways by which we

may deduce the electron distribution in the p system, made up from the four pz orbitals and holding the

remaining four electrons. Starting with the electron in the box with four p orbitals, we can construct Fig. 1.37,

which shows the four wave functions, inside which the p orbitals are placed at the appropriate regular intervals.

C C
C
H

H
H

H
C

H
H

1.8 1.9

1

2 4

3

We get a new set of orbitals,  1,  2,  3*, and  4*, each described by Equation 1.11 with four terms:

 ¼ c1�1 þ c2�2 þ c3�3 þ c4�4 1:11

1

3*

4*

2

0.371
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–0.371
–0.600
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0.600

0.600

0.600

0.600

0.600

–0.600

HOMO

LUMO

0 nodes

1 node

2 nodes

3 nodes

Fig. 1.37 p Molecular orbitals of butadiene
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The lowest-energy orbital  1 has all the c-values positive, and hence bonding is at its best. The next-

highest energy level has one node, between C-2 and C-3; in other words, c1 and c2 are positive and c3 and c4

are negative. There is therefore bonding between C-l and C-2 and between C-3 and C-4, but not between C-2

and C-3. With two bonding and one antibonding interaction, this orbital is also overall bonding. Thus the

lowest-energy orbital of butadiene,  1, reasonably enough, has a high population of electrons in the middle,

but in the next orbital up,  2, because of the repulsion between the wave functions of opposite sign on C-2

and C-3, the electron population is concentrated at the ends of the conjugated system. Overall, summing the

squares of the coefficients of the filled orbitals,  1 and  2, the p electrons are, at this level of approximation,

evenly spread over all four carbon atoms of the conjugated system.

We can easily give numerical values to these coefficients, using the convention that the edge of the box is

drawn one bond length out from the terminal carbon atoms. Treating the conjugated system as being linear,

the coefficients are proportional to the sine of the angle, as defined by the position of the atom within the sine

curve. The algebraic expression for this idea in the general case, and illustrated in Fig. 1.37 for the specific

case of butadiene, with the atomic orbitals inscribed within the sine curves, is Equation 1.12:

cjr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

nþ 1

r
sin

rjp
nþ 1

1:12

giving the coefficient cjr for atom j in molecular orbital r of a conjugated system of n atoms (so that j and

r¼ 1, 2, 3, . . . , n). The expression in front of the sine function is the normalisation factor to make the squares

of the coefficients add up to one. Thus, taking  2 for butadiene (r¼ 2, n¼ 4 and the sine curve is a full 2p):

the normalisation factor for n¼ 4 is 0.632, the angle for the first atom (j¼ 1) is 2p/5, the sine of which is

0.951, and the coefficient c1 is the product 0.632 � 0.951¼ 0.600. Similarly, c2 is 0.371, c3 is –0.371 and c4

is –0.600.

Large lists of coefficients for conjugated systems, some as easily calculated as butadiene above, some

more complicated, have been published.18 As with the allyl system, other patterns are also present because of

the symmetry of the molecule: for alternant conjugated systems (those having no odd-membered rings), the

|c| values are reflected across a mirror plane placed horizontally, half way between  2 and  3*, and also

across a mirror plane placed vertically, half way between C-2 and C-3. It is only necessary therefore to

calculate four of the 16 numbers in Fig. 1.37, and deduce the rest from the symmetry.

Alternatively, we can set up the conjugated system of butadiene by looking at the consequences of

allowing two isolated p bonds to interact, as they will if they are held within bonding distance. It is perhaps a

little easier to see on this diagram the pattern of raised and lowered energy levels relative to those of the p
bonds from which they are derived. Let us first look at the consequence of allowing the orbitals close in

energy to interact, which they will do strongly (Fig. 1.38). (For a brief account of how the energy difference

between interacting orbitals affects the extent of their interaction, see the discussion of Equations 1.13 and

1.14 on p. 54.) The interactions of p with p and of p* with p* on the left create a new set of orbitals,  a- d*.

This is not the whole story, because we must also allow for the weaker interaction, shown on the right, of the

orbitals further apart in energy, p with p*, which on their own would create another set of orbitals,  w- z*.

Mixing these two sets together, and allowing for the greater contribution from the stronger interactions, we

get the set of orbitals (Fig. 1.39), matching those we saw in Fig. 1.37. Thus, to take just the filled orbitals, we

see that  1 is derived by the interaction of p with p in a bonding sense ( a), lowering the energy of  1 below

that of the p orbital, and by the interaction of p with p* in a bonding sense ( w), also lowering the energy

below that of the p orbital. Since the former is a strong interaction and the latter weak, the net effect is to

lower the energy of  1 below the p level, but by a little more than the amount (� in simple Hückel theory,

illustrated as Ep in Fig. 1.26) that a p orbital is lowered below the p level (the dashed line � in Figs. 1.31, 1.32

and 1.33, called � in simple Hückel theory) in making the p bond of ethylene. However,  2 is derived from

the interaction of p with p in an antibonding sense ( b), raising the energy above that of the p orbital, and by

the interaction of p* with p in a bonding sense ( x), lowering it again. Since the former is a strong interaction

30 MOLECULAR ORBITALS AND ORGANIC CHEMICAL REACTIONS



and the latter weak, the net effect is to raise the energy of  2 above the p level, but not by as much as a p*

orbital is raised above the p level in making the p bond of ethylene. Yet another way of looking at this system

is to say that the orbitals  1 and  2 and the orbitals  3* and  4* mutually repel each other.

We are now in a position to explain the well-known property that conjugated systems are often, but not

always, lower in energy than unconjugated systems. It comes about because  1 is lowered in energy more

than  2 is raised (E1 in Fig. 1.39 is larger than E2). The energy (E1) given out in forming  1 comes from the

*

d*

a

c

b

*

y*

w

z*

x

*

Fig. 1.38 Primary interactions of the p molecular orbitals of two molecules of ethylene. (No attempt is made to

represent the relative sizes of the atomic orbitals)
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Fig. 1.39 Energies of the p molecular orbitals of ethylene and butadiene by orbital interaction
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overlap between the atomic orbitals on C-2 and C-3; this overlap did not exist in the isolated p bonds. It is

particularly effective in lowering the energy of  1, because the coefficients on C-2 and C-3 are large. By

contrast, the increase in energy of  2, caused by the repulsion between the orbitals on C-2 and C-3, is not as

great, because the coefficients on these atoms are smaller in  2. Thus the energy lost from the system in

forming  1 is greater than the energy needed to form  2, and the overall p energy of the ground state of the

system ( 1
2 2

2) is lower. We can of course see the same pattern, and attach some very approximate numbers,

using the geometrical analogy. This is illustrated in Fig. 1.40, which shows that  2 is raised above p by

0.382� and  1 is lowered below p by 0.618�. The overall lowering in energy for the extra conjugation is

therefore (2 � 0.618þ 2 � 1.618) – 4¼ 0.472� or about 66 kJ mol–1.

Before we leave butadiene, it is instructive to look at the same p orbitals in wire-mesh diagrams (Fig. 1.41) to

reveal more accurately what the electron distribution in the p molecular orbitals looks like. In the allyl system

and in butadiene, we have seen more than one filled and more than one empty orbital in the same molecule. The

� framework, of course, with its strong� bonds, has several other filled orbitals lying lower in energy than either

 1 or  2, but we do not usually pay much attention to them when we are thinking of reactivity, simply because

they lie so much lower in energy. In fact, we shall be paying special attention to the filled molecular orbital

which is highest in energy ( 2, the HOMO) and to the unoccupied orbital of lowest energy ( 3*, the LUMO).

1.4.3 Longer Conjugated Systems

In extending our understanding to the longer linear conjugated systems, we need not go through all the arguments

again. The methods are essentially the same. The energies and coefficients of the p molecular orbitals for all six

systems from an isolated p orbital up to hexatriene are summarised in Fig. 1.42. The viewpoint in this drawing is

directly above the p orbitals, which appear therefore to be circular. This is a common simplification, rarely likely

to lead to confusion between a p orbital and an s orbital, and we shall use it through much of this book.

ethylene

1

2

*
3*

1.618

0.618

4*

butadiene

Fig. 1.40 Energies of the p molecular orbitals of ethylene and butadiene by geometry

ψ1 ψ 2 ψ 3* ψ 4*

Fig. 1.41 The p molecular orbitals of butadiene in the s-trans conformation
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The longer the conjugated system, the lower the energy of 1, but each successive drop in energy is less than

it was for the system with one fewer atoms, with a limit at infinite length of 2�. Among the even-atom species,

the longer the conjugated system, the higher the energy of the HOMO, and the lower the energy of the LUMO,

with the energy gap becoming ever smaller. With a narrow HOMO—LUMO gap, polyenes allow the easy

promotion of an electron from the HOMO to the LUMO, and the longer the conjugated system, the easier it is,

making the absorption of UV and visible light ever less energetic. Most organic chemists will be happy with

this picture, and most of the consequences in organic chemistry can be left at this level of understanding.

At the extreme of an infinite polyene, however, simple Hückel theory reduces the HOMO—LUMO gap to

zero, since the secants in diagrams like Fig. 1.40, would become infinitely small as they moved to the perimeter

of the circle. Such a polyene would have equal bond lengths between each pair of carbon atoms, there would be

no gap between the HOMO and the LUMO, and it would be a metallic conductor. This is not what happens—

long polyenes, like polyacetylene, have alternating double (or triple) and single bonds, and their interconver-

sion, which is the equivalent of the movement of current along the chain, requires energy. The theoretical

description of this modification to simple Hückel theory is known by physicists as a Peierls distortion. It has its

counterpart for chemists in the Jahn-Teller distortion seen, for example, in cyclobutadiene, which distorts to

have alternating double and single bonds, avoiding the degenerate orbitals and equal bond lengths of square

cyclobutadiene (see Section 1.5.2). The simple Hückel picture is evidently wrong at this extreme of very long

conjugated systems. One way of appreciating what is happening is to think of the HOMO and the LUMO

interacting more strongly when they are close in energy, just as the filled and unfilled orbitals of butadiene repel

each other (Fig. 1.39), but more so. The residual gap, corresponding approximately to what is called by

physicists the ‘band-gap energy’, is amenable to tuning, by attaching suitable substituents, just like any other

HOMO—LUMO gap. Tailoring it has proved to be a basis for tuning the properties of optical devices.19

The process by which alternating double and single bonds might exchange places is strictly forbidden by

symmetry, but occurs in practice, because the mismatch in symmetry of adjacent elements is disrupted by having

an atom lacking an electron or carrying an extra electron in the chain.20 Thus an ‘infinite’ polyene can have long

stretches of alternating single and double bonds interrupted by a length of conjugated p orbitals resembling a

conjugated cation, radical or anion. Such ‘defects’ are chains of conjugated atoms, but like the chain of the

polyene itself, the feature of equal bond lengths does not stretch infinitely along the whole ‘molecule’, as simple

Hückel theory would suggest. It is limited in what physicists call ‘solitons’. In the soliton, there is no bond

alternation at its centre, but bond alternation appears at greater distances out from its centre. Solitons provide a

mechanism for electrical conduction along the chain, which is described as being ‘doped’. Unfortunately, the

physicists’ nomenclature in the polymer area departs from that of the organic chemist, with expressions like

‘tight binding model’ meaning much the same as the LCAO approximation, ‘band structure’ for the stack of

orbitals, ‘band gap’ for the HOMO—LUMO gap, ‘valence band’ for the HOMO, ‘Fermi energy’ meaning

roughly the same as the energy of the HOMO, and the ‘conduction band’ meaning roughly the same as the

LUMO. The physical events are of course similar, and the comparisons have been elegantly discussed.21 Such a

breakdown in Hückel theory is not normally encountered in organic chemistry, where delocalisation can be

expected to stretch undeterred by the length of the conjugated systems in what we might call ordinary molecules.

1.5 Aromaticity22

1.5.1 Aromatic Systems

One of the most striking properties of conjugated organic molecules is the special stability found in the group

of molecules called aromatic, with benzene 1.10 as the parent member and the longest established example.

Hückel predicted that benzene was by no means alone, and that cyclic conjugated polyenes would have

exceptionally low energy if the total number of p electrons could be described as a number of the form

(4nþ 2), where n is an integer. Other 6p-electron cyclic systems such as the cyclopentadienyl anion 1.11 and

the cycloheptatrienyl cation 1.12 belong in this category. The cyclopropenyl cation 1.13 (n¼ 0),
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[14]annulene 1.14 (n¼ 3), [18]annulene 1.15 (n¼ 4) and many other systems have been added over the

years.23 Where does this special stability come from?

1.10 1.11 1.12 1.13
1.151.14

We can approach this question in much the same way as we approached the derivation of the molecular

orbitals of conjugated systems. We begin with a � framework containing the C—C and C—H � bonds. We

must then deduce the nodal properties of the p molecular orbitals created from six p orbitals in a ring. They

are all shown both in elevation and in plan in Fig. 1.43. The lowest-energy orbital 1 has no node as usual, but

because the conjugated system goes round the ring instead of spilling out at the ends of the molecule, as it did

1

2 3

4*

6*

5*

0.408

–0.5000.500

–0.577

0.577

–0.289

0.289

–0.408

005.0–005.0

0.289

–0.289

–0.289

–0.289 –0.289

–0.289

0.577

0.577

0.500

0.500

–0.500

–0.500

0.408

0.408

0.408

0.408

0.408

0.408

0.4080.408

–0.408 –0.408

Fig. 1.43 The p molecular orbitals of benzene
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with the linear conjugated systems, the coefficients on all six atoms are equal. The other special feature is

that there are two orbitals having the same energy with one node  2 and  3, because they can be created in

two symmetrical ways, one with the node horizontal  2 and one with it vertical  3. Similarly, there are two

orbitals,  4* and  5*, with the same energy having two nodes. Finally there is the one orbital,  6*, with three

nodes.

The size of the coefficients can be deduced from the position of the atoms within the sine curves, in the

usual way. They support the assumption from symmetry that the amount of bonding in  2 equals that in  3.

Thus the allyl-like overlap in the two halves of  2 has bonding between a large (–0.577) and two small

(–0.289) lobes, whereas the antibonding interaction is between the two small lobes. The result is actually a

lowering of energy for this orbital equal to that of the p bond in ethylene (�). In  3 there is bonding between

lobes of intermediate size (–0.500) and the interaction across the ring between the lobes of opposite sign is,

like  2 in the allyl system, nonbonding rather than antibonding. Overlap between the p orbitals in ethylene

(c¼ 0.707) gives rise to a lowering of energy (�) worth one full p bond. Overlap between two lobes of the

same sign in  3 with coefficients of –0.50 gives rise to half a p bond (0.7072¼ 0.500), and two such

interactions comes again to one full p bond. The fully bonding overlap of the six orbitals (c¼ 0.408) in  1

gives rise to two p bond’s worth of bonding. The total of p bonding is thus 2 � 4�, which is two more � units

than three isolated p bonds. Benzene is also lowered in p energy by more than the amount for three linearly

conjugated p bonds: taking the numbers for hexatriene from Fig. 1.40, the total of p bonding is 2 � (1.802

þ 1.247þ 0.445)�¼ 7�. The extra p bonding is the special feature of aromatic systems.

The energies of the molecular orbitals can also be deduced by the same device, used for linear

conjugated systems, of inscribing the conjugated system inside a circle of radius 2�. There is no need

for dummy atoms, since the sine curves go right round the ring, and the picture is therefore that shown in

Fig. 1.44.

It is also possible to find the source of aromatic stabilisation by looking at an interaction diagram. For

benzene 1.10, one way is to start with hexatriene 1.16, and examine the effect of bringing the ends of the

conjugated system, C-1 and C-6, within bonding distance (Fig. 1.45). Since we are only looking at the p
energy, we ignore the C—H bonds, and the fact that to carry out this ‘reaction’ we would have to break two of

them and make a C—C � bond in their place. In  1 and  3 the atomic orbitals on C-1 and C-6 have the same

sign on the top surface. Bringing them within bonding distance will increase the amount of p bonding, and

lower the energy of  1 and  3 in going from hexatriene to benzene. In  2 however, the signs of the atomic

orbitals on C-1 and C-6 are opposite to each other on the top surface, and bringing them within bonding

distance will be antibonding, raising the energy of  2 in going from hexatriene to benzene. The overall result

is two drops in energy to one rise, and hence a lowering of p energy overall.

2

3

1

4*

2

6*

5*

Fig. 1.44 The energies of the p molecular orbitals of benzene
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However, the ups and downs are not all equal as Fig. 1.45, which is drawn to scale, shows. The net lowering

in p energy, relative to hexatriene, is actually only one � value, as we deduced above, not two. It is barely

legitimate, but there is some accounting for this difference—the overlap raising the energy of  2 and

lowering the energy of  3 is between orbitals with large coefficients, more or less cancelling one another

out; however, the overlap between C-1 and C-6 in 1 is between orbitals with a small coefficient, making that

drop close to 0.5� as shown in Fig. 1.45.

One of the most striking artifacts of aromaticity, in addition to the lowering in energy, is the diamagnetic

anisotropy, which is characteristic of these rings. Although known long before NMR spectroscopy was

introduced into organic chemistry, its most obvious manifestation is in the downfield shift experienced by

protons on aromatic rings, and perhaps even more vividly by the upfield shift of protons on the inside of the large

aromatic annulenes. The theory24,25 is beyond the scope of this book, but it is associated with the system of p
molecular orbitals, and can perhaps be most simply appreciated from the idea that the movement of electrons

round aromatic rings is free, like that in a conducting wire, as epitomised by the equal C—C bond lengths.

Like the conjugation in polyenes that we saw earlier, aromaticity does not stretch to infinitely conjugated

cyclic systems, even when they do have (4nþ2) electrons. Just as long polyenes do not approach a state with

equal bond lengths as the number of conjugated double bonds increases, the (4nþ2) rule of aromaticity

breaks down, with bond alternation setting in when n reaches a large number. It is not yet clear what that

number is with neither theory nor experiment having proved decisive. Early predictions26 that the largest

possible aromatic system would be [22] or [26]annulene were too pessimistic, and aromaticity, using the

ring-current criterion, probably peters out between [34] and [38]annulene.27

1.5.2 Antiaromatic Systems

A molecule with 4n p electrons in the ring, with the molecular orbitals made up from 4n p orbitals, does not

show this extra stabilisation. Molecules in this class that have been studied include cyclobutadiene 1.17

0.418

–0.521

1

01.161.1

2 3

1

2

3

1

6

0.232

0.232

–0.418

–0.521

0.445

1.247

1.802

1

2

Fig. 1.45 The drop in p energy in going from hexatriene to benzene
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(n¼ 1), the cyclopentadienyl cation 1.18, the cycloheptrienyl anion 1.19, cyclooctatetraene 1.20 and

pentalene 1.21 (n¼ 2), [12]annulene 1.22 (n¼ 3) and [16]annulene 1.23 (n¼ 4).

We can see this most easily by looking at the molecular orbitals of square cyclobutadiene in

Fig. 1.46. As usual, the lowest energy orbital  1 has no nodes, and, as with benzene and because of

the symmetry, there are two exactly equivalent orbitals,  2 and  3, with one node. The bonding in  1

is between atomic orbitals with coefficients of 0.500, not only between C-1 and C-2, but also between

C-2 and C-3, between C-3 and C-4 and between C-4 and C-1. If the overlap in  3 of benzene, which

also has coefficients of 0.500, gives an energy-lowering of 1�, then the overlap in  3 of cyclobuta-

diene should give twice as much energy-lowering, since there are twice as many bonding interactions

(this makes an assumption that the p orbitals are held at the same distance by the � framework in

both cases). In contrast, the bonding interactions both in  2 and  3 are exactly matched by the

antibonding interactions, and there is no lowering of the energy below the line (�) representing the

energy of a p atomic orbital on carbon. The molecular orbitals  2 and  3 are therefore nonbonding

orbitals, and the net lowering in energy for the p bonding in cyclobutadiene is only 2 � 2�. The

energies of the four p orbitals are again those we could have deduced from the model inscribing the

conjugated system in a circle, with the point of the square at the bottom. The total p stabilisation of

2 � 2� is no better than having two isolated p bonds—there is therefore no special extra stabilisation

from the cyclic conjugation relative to two isolated p bonds. There is however less stabilisation than

that found in a pair of conjugated double bonds—the overall p bonding in butadiene, taking values

from Fig. 1.40, is 2 � (1.618þ 0.618)�¼ 4.472� and the overall p bonding in cyclobutadiene is only

2 � 2� making it less stable by 0.472�.

1

2 3

4*

0.500

–0.500

2

0.500 0.500

0.500

0.500

0.5000.500 0.500

0.500

0.500–0.500

–0.500

–0.500–0.500–0.500

Fig. 1.46 The p molecular orbitals of cyclobutadiene
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02.171.1
1.23

1.21
1.22

1.18 1.19

We can reach a similar conclusion from an interaction diagram, by looking at the effect of changing

butadiene 1.24 into cyclobutadiene 1.25 (Fig. 1.47). This time there is one drop in p energy and one rise,

and no net stabilisation from the cyclic conjugation. As with benzene, we can see that the drop is actually less

(from overlap of orbitals with a small coefficient) than the rise (from overlap of orbitals with a large

coefficient). Thus cyclobutadiene is less stabilised than butadiene.

There is much evidence that cyclic conjugated systems of 4n electrons show no special stability.

Cyclobutadiene dimerises at extraordinarily low temperatures (>35K).28 Cyclooctatetraene is not planar,

and behaves like an alkene and not at all like benzene.29 When it is forced to be planar, as in pentalene, it

becomes unstable to dimerisation even at 0 �C.30 [12]Annulene and [16]annulene are unstable with respect

to electrocyclic reactions, which take place below 0 �C.31 In fact, all these systems appear on the whole to

be significantly higher in energy and more reactive than might be expected, and there has been much

speculation that they are not only lacking in extra stabilisation, but are actually destabilised. They have

been called ‘antiaromatic’32 as distinct from nonaromatic. The problem with this concept is what to make

the comparisons with. We can see from the arguments above that we can account for the destabilisation

1.24
1.25

2

2

1

1

0.618

2

1.618

0.371

0.600

–0.600

0.371

Fig. 1.47 No change in p energy in going from butadiene to cyclobutadiene
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relative to conjugated p bonds—linear conjugation is more energy-lowering than the cyclic conjugation of

4n electrons, which goes some way to setting the concept of antiaromaticity on a physical basis. This

argument applies to the thermodynamics of the system, which indirectly affects the reactivity. That 4n

systems are unusually reactive is also explicable with an argument based on the frontier orbitals, as we

shall see later—the HOMO is unusually high in energy for a neutral molecule, at the nonbonding � level

for cyclobutadiene and the other uncharged cyclic hydrocarbons 1.18–1.23, significantly above the level

of the HOMO of the linear conjugated hydrocarbons, and at the same time the LUMO is correspondingly

low in energy.

The prediction from the argument in Fig. 1.46 is that square cyclobutadiene ought to be a diradical with

one electron in each of  2 and  3, on the grounds that putting a second electron into an occupied orbital is not

as energy-lowering as putting the first electron into that orbital (see Section 1.2). This is not borne out by

experiment, which has shown that cyclobutadiene is rectangular with alternating double and single bonds

and shows no electron spin resonance (ESR) signal.33

We can easily explain why the rectangular structure is lower in energy than the square. So far, we have made

all p bonds contribute equally one �-value to every p bond. The difference in �-values, and hence in the

strengths of p bonds, as a function of how closely the p orbitals are held, can be dealt with by defining a

standard �0 value for a C¼C double bond and applying a correction parameter k, just as we shall in Equation

1.16 for the effect of changing from a C¼C double bond to a C¼X double bond. Some values of k for different

distances r can be seen in Table 1.1,34 which was calculated with �0 based on an aromatic double bond, rather

than the double bond of ethylene, and by assuming that � is proportional to the overlap integral S.

In the rectangular structure of cyclobutadiene, the symmetry is lowered, and the molecular orbitals

corresponding to  2 and  3 are no longer equal in energy (Fig. 1.48). The overall bonding in  1 is more

or less the same as in the square structure—C-1 and C-2 (and C-3 and C-4) move closer together in  1, and

the level of bonding is actually increased by about as much as the level of bonding is decreased in moving the

Table 1.1 Variation of the correction factor k with distance r

r (Å) k r (Å) k

1.20 1.38 1.45 0.91

1.33 1.11 1.48 0.87

1.35 1.09 1.54 0.78

1.397 1.00

1

3*

0.500 0.500

0.500

0.500

0.500

0.500

–0.500

–0.500

2

0.500

0.500

–0.500–0.500

C-2

C-3C-4

C-1

Fig. 1.48 The three lowest-energy p molecular orbitals of rectangular cyclobutadiene
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other pairs apart. In the other filled orbital,  2, the same distortion, separating the pair (C-1 from C-4 and C-2

from C-3) will reduce the amount of p antibonding between them, and hence lower the energy. The

corresponding argument on  3 will lead to its being raised in energy, and becoming an antibonding orbital.

With one p orbital raised in energy and the other lowered, the overall p energy will be much the same, and the

four electrons then go into the two bonding orbitals. This is known as a Jahn-Teller distortion, and can be

expected to be a factor whenever a HOMO and a LUMO are very close in energy,35 as we have already seen

with very long conjugated systems in Section 1.4.3. The square structure will be the transition structure for

the interconversion of the one rectangular form into the other, a reaction that can be expected to be fairly

easy, but to have a discernible energy barrier. Proper molecular orbital calculations support this conclu-

sion.36 We must be careful in arguments like this, based only on the p system, not to get too carried away. We

have not allowed for distortions in the � framework in going from the square to the rectangular structure, and

this can have a substantial effect.

1.5.3 The Cyclopentadienyl Anion and Cation

A slightly different case is provided by the cyclopentadienyl anion and cation. The device of inscribing the

pentagon in a circle sets up the molecular orbitals in Fig. 1.49. The total of p bonding energy is

2 � 3.236�¼ 6.472� for the anion, in which there are two electrons in  1, two electrons in  2, and two

electrons in  3. The anion is clearly aromatic, since the open-chain analogue, the pentadienyl anion has only

2 � 2.732�¼ 5.464� worth of p bonding (Fig. 1.40), the extra stabilisation being close to 1�, and closely

similar to the extent by which benzene is lower in energy than its open-chain analogue, hexatriene. The

cyclopentadienyl anion 1.11, a 4nþ2 system, is well known to be exceptionally stabilised, with the pKa of

cyclopentadiene at 16 being strikingly low for a hydrocarbon. The cation, however, has p-bonding energy of

2 � 2.618�¼ 5.236�, whereas its open-chain analogue, the pentadienyl cation, in which there are two

electrons in  1 and two electrons in  2, has more p bonding, specifically 2 � 2.732�¼ 5.464�. The

cyclopentadienyl cation 1.18, a 4n system, can be expected to be thermodynamically high in energy overall

and therefore difficult to make, and so it is known to be. The cyclopentadienyl cation is not formed from its

iodide by solvolysis under conditions where even the unconjugated cyclopentyl iodide ionises easily.37 In

addition, the cyclopentadienyl cation ought to be especially electrophilic for kinetic reasons, since the energy

of the LUMO is actually below the � level. It is also known to be a diradical in the ground state.38 The

fluorenyl cation, the dibenz analogue of the cyclopentadienyl cation, however, does not appear to be

significantly higher in energy than might be expected of a doubly benzylic cation held coplanar.39

2
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2 3
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Fig. 1.49 The energies and coefficients of the p molecular orbitals of the cyclopentadienyl system
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A striking difference between all the aromatic and all the antiaromatic systems is the energy difference

between the HOMO and the LUMO. The aromatic systems have a substantial gap between the frontier

orbitals, and the antiaromatic systems a zero gap in simple Hückel theory or a small gap if the Jahn-Teller

distortion is allowed for. The difference in energy between the HOMO and the LUMO correlates with the

hardness of these hydrocarbons as nucleophiles, and with some measures of aromaticity.40 For example,

in antiaromatic rings with 4n electrons, there is a paramagnetic ring current, which is a manifestation of

orbital effects, just like the diamagnetic ring currents from aromatic rings. The protons at the perimeter of

a 4n annulene, when it is stable enough for measurements to be made, are at high field, and protons on the

inside of the ring are at low field. The slow interconversion of the double and single bonds in antiaro-

matic systems means that there is no free movement of the electrons round the ring, and so any

diamagnetic anisotropy is muted. At the same time, the near degeneracy of the HOMO and the LUMO

in the 4n annulenes allows a low-energy one-electron transition between them with a magnetic moment

perpendicular to the ring, whereas the aromatic systems, with a much larger energy gap between the

highest filled and lowest unfilled orbitals do not have this pathway.41 Single electrons are associated with

induced paramagnetic fields, as seen in the ESR spectra of odd electron systems.

1.5.4 Homoaromaticity42

The concept of aromaticity can be extended to systems in which the conjugated system is interrupted, by a

methylene group, or other insulating structural feature, provided that the overlap between the p orbitals of

the conjugated systems can still take place through space across the interruption. When such overlap has

energy-lowering consequences, evident in the properties of the molecule, the phenomenon is called

homoaromaticity. Examples are the homocyclopropenyl cation 1.26, the trishomocyclopropenyl cation

1.27, the bishomocyclopentadienyl anion 1.28 and the homocycloheptatrienyl cation 1.29. Each of these

species shows evidence of transannular overlap, illustrated, and emphasised with a bold line on the

orbitals, in the drawings 1.26b, 1.27b, 1.28b and 1.29b. The same species can be drawn without orbitals

in localised structures 1.26a, 1.27a, 1.28a and 1.29a and with the drawings 1.26c, 1.27c, 1.28c and 1.29c

showing the delocalisation. For simplicity, the orbital drawings do not illustrate the whole set of p
molecular orbitals, which simply resemble in each case the p orbitals of the corresponding aromatic

system.

However, homoaromaticity appears to be absent in homobenzene (cycloheptatriene) 1.30a and in

trishomobenzene (triquinacene) 1.31a, even though transannular overlap looks feasible. In both cases,

the conventional structures 1.30a and 1.30c, and 1.31a and 1.31c are lower in energy than the homoaro-

matic structures 1.30b and 1.31b, which appear to be close to the transition structures for the

interconversion.

H
H

H

H

H

H
H

H H

a72.1a62.1

1.29a 1.29b 1.29c

c72.1b72.1c62.1b62.1

1.28a 1.28b 1.28c
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Homoantiaromaticity is even less commonly invoked. Homocyclobutadiene 1.32b and the homocyclo-

pentadienyl cation 1.33b are close to the transition structures for the interconversion of cyclopentadiene

1.32a and bicyclo[2.1.0]pentene 1.32c and of the cyclohexatrienyl cation 1.33a and the bicyclo[3.1.0]hex-

enyl cation 1.33c. However, homoantiaromaticity does show up in these cases, in the sense that, unlike the

interconversions in 1.30 and 1.31, neither of these interconversions is rapid.

H

H

1.30a

1.30b

1.30c

1.31a

1.31b

1.31c

H

H

H
H

1.33a 1.33c

1.33b

1.32a

1.32b

1.32c

We evidently have three situations, summarised in Fig. 1.50. In Fig. 1.50a, the homoaromatic structures

1.26c–1.29c, however they may be drawn, are at an energy minimum relative to the hypothetical localised

structures 126a–129a, and there is an energy E associated with the cyclic delocalisation. In Fig. 1.50b, we

have the localised structures 1.30a and c or 1.31a and c at minima, with the potentially homoaromatic

systems 1.30b or 1.31b near or at the top of a shallow curve. Finally with the homoantiaromatic systems, the

transition structures 1.32b or 1.33b are evidently high in energy with a greatly enlarged DE, the activation

energy for the interconversion of the localised structures. We shall see this again in Chapter 6 with

electrocyclic interconversions—those with aromatic transition structures like 1.30b and 1.31b are ‘allowed’,

and those with antiaromatic transition structures like 1.32b and 1.33b are ‘forbidden’.

The concept of homoaromaticity and homoantiaromaticity is sound. The nature of the overlap in

the aromatic and antiaromatic systems is not dependent upon the atoms being directly bonded by the

� framework. The � framework in an aromatic system has the effect of holding the p orbitals close,
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making the p overlap strong in consequence. Separating the p orbitals by a methylene group, or any

other insulating group, will usually weaken such overlap, and often cause it to be stronger on one

surface than the other, but it does not necessarily remove it completely. In favourable cases it can be

strong, and lead to noticeable effects. The factors affecting when it is and is not strong have been

discussed.43

1.5.5 Spiro Conjugation

In addition to � and p overlap, p orbitals can overlap in another way, even less effective in lowering the

energy, but still detectable. If one conjugated system is held at right angles to another in a spiro structure,

with the drawing 1.34 representing the general case and hydrocarbons 1.35 and 1.36 two representative

examples, the p orbitals of one can overlap with the p orbitals of the other, as symbolised by the bold lines on

the front lobes in the drawing 1.34. The overlap integral will be small, but if the symmetry matches, the

interaction of the molecular orbitals can lead to new orbitals, raised or lowered in energy in the usual way. If

the symmetry is not appropriate, the overlap will simply have no effect.

1.34 1.35 1.36

Take spiroheptatriene 1.35, with the unperturbed orbitals of each component shown on the left and right in

Fig. 1.51. The only orbitals that can interact are  2 on the left and p* on the right; all the others having the

wrong symmetry. For example, the interaction of the top lobes of  1 on the left and the upper p orbital of the

p orbital on the right, one in front and one behind, have one in phase and one out of phase, exactly cancelling

each other out; similarly with the front p lobes on the right and the upper and lower lobes of the front-right p

orbital of  1 on the left.

The two orbitals that do interact,  2 and p*, which have the same symmetry, create the usual pair of new

orbitals, one raised and one lowered. Since there are only two electrons to go into the new orbitals, the overall

energy of the conjugated system is lowered. The effect, DEs, is small, both because of the poor overlap, and

because the two orbitals interacting are far apart in energy, which we shall see later is an important factor.

Nevertheless, it is a general conclusion that if the total number of p electrons is a (4nþ2) number, the spiro

system is stabilised, leading to the concept of spiroaromaticity.

1.30c,1.31c

1.30a,1.31a

1.30b,1.31b

1.26c-1.29c

E
1.32c,1.33c

1.32a,1.33a

1.32b,1.33b

E

(a) Homoaromatic systems (b) Potentially homoaromatic
systems

(c) Homoantiaromatic
systems

E1.26a-1.29a

Fig. 1.50 Relative energies of some localised, homoaromatic and homoantiaromatic structures
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There is equally a phenomenon of spiroantiaromaticity when the total number of p electrons is a 4n

number, as in spirononatetraene 1.36 (Fig. 1.52). Here the only orbitals with the right symmetry to

interact productively are the  2 orbitals on each side (ignoring the interaction of the unfilled  4*

orbitals with each other, which has no effect on the energy because there are no electrons in these

4*

1

2

3*

*

1.35

Es

Fig. 1.51 p Molecular orbitals of the ‘aromatic’ spiroheptatriene

4*

1

2

3*

1.36

4*

1

2

3*

Es*

Es

Fig. 1.52 p Molecular orbitals of the ‘antiaromatic’ spirononatetraene
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orbitals). They lead to the usual two new orbitals, but since there are four electrons to go into them,

the net effect is to raise the overall energy, with the bonding combination lowered in energy DEs less

than the antibonding combination is raised DEs*. The splitting of the energy levels (DEsþDEs*) has

been measured to be 1.2 eV, and this molecule does show exceptional reactivity, in agreement with

the increase in overall energy and the raising of the energy of the HOMO.44

1.6 Strained s Bonds—Cyclopropanes and Cyclobutanes

As we have just seen, it is possible to have some bonding even when the overlap is neither strictly head-on

nor sideways-on. It is easily possible to retain much more of the bonding when the orbitals are rather better

aligned than those in spiro-conjugated systems, as is the case in several strained molecules, epitomised by

cyclopropane.

1.6.1 Cyclopropanes

There are several ways to describe the � bonds in cyclopropane. The most simple is to identify the C—H

bonds as coming from the straightforward sp3 hybrids on the carbon atoms and the 1s orbitals on the

hydrogen atoms 1.37 in the usual way, and the C—C bonds as coming from the remaining sp3 hybrids

imperfectly aligned 1.38. In more detail, these orbitals ought to be mixed in bonding and antibonding

combinations to create the full set of molecular orbitals, but even without doing so we can see that C—C

bonding is somewhere between � bonding (head-on overlap) and p bonding (sideways-on overlap). We can

expect these bonds to have some of the character of each, which fits in with the general perception that

cyclopropanes can be helpfully compared with alkenes in their reactivity and in their power to enter into

conjugation. Thus cyclopropane 1.40 is much less reactive than ethylene 1.39 towards electrophiles like

bromine, but it is much more reactive than ethane 1.41. Conjugation of a double bond or an aromatic ring

with a cyclopropyl substituent is similar to conjugation with an alkene, but less effective in most cases.

However, conjugation between a cyclopropane and an empty p orbital on carbon is more effective in

stabilising the cyclopropylmethyl cation than conjugation with a double bond is in the allyl cation (see p. 88).

H

H H

H

H H

1.381.37

H
H H

H
H

H

Br Br

Br
Br

BrBr

Br Br Br Br

wolstsaf

no reaction

1.39 1.40 1.41

Another way of understanding the C—C bonding, known as the Walsh description, emphasises the

capacity of a cyclopropyl substituent to enter into p bonding. In this picture, which is like the picture of

the bonding in ethane without using hybridisation (Fig. 1.22), the six C—H bonds are largely made up from

the s orbitals on hydrogen and the s, px and pz orbitals on carbon, with the x, y and z axes redefined at each

corner to be local x, y and z coordinates. The picture of C—H bonding can be simplified by choosing sp
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hybridisation from the combination of the 2s and 2px orbitals, and using the three sp hybrids with the large

lobes pointing outside the ring and the three pz orbitals to make up the CH bonding orbitals (Fig. 1.53).

Some of these orbitals contribute to C—C bonding, notably the �CH,pCC orbital, but the major contributors

are the overlap of the three sp hybrids with the large lobes pointing into the ring, which produce one

bonding combination �CC, and the three py orbitals, which combine to produce a pair of bonding orbitals

pCC, each with one node, and with coefficients to make the overall bonding between each of the C—C

bonds equal.

The advantage of this picture is that it shows directly the high degree of p bonding in the C—C bonds, and

gives directly a high-energy filled p orbital, the pCC orbital at the top right, largely concentrated on C-1, and

with the right symmetry for overlap with other conjugated systems, as we shall see in Section 2.2.1.

A remarkable property of cyclopropanes is that they are magnetically anisotropic, rather like benzene—

but with the protons coming into resonance in their NMR spectra at unusually high field, typically 1 ppm

upfield of the protons of an open-chain methylene group. For 1H NMR spectroscopy, this is quite a large

effect, and it is also strikingly in the opposite direction from that expected by the usual analogy drawn

between a cyclopropane and an alkene. The anisotropy45 is most likely a consequence of the presence of

overlap from three sets of orbitals having a total of six electrons in them. These could be seen as the 1s sp3

orbitals contributing to the C—H bonds 1.37, which we could have mixed to get a set of orbitals resembling
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Fig. 1.53 A simplified version of the occupied Walsh orbitals of cyclopropane
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the p orbitals of benzene. Alternatively, turning to Fig. 1.53, the pair of �CH orbitals just below the highest

occupied orbitals, together with the �CH,pCC orbital, clearly have the same nodal pattern as the filled p
orbitals of benzene (Fig. 1.43), and the pattern is repeated in the three filled orbitals of lowest energy. This

pattern of orbitals is associated, as with benzene, with the capacity to support a ring current, but, in contrast to

benzene, the derived field places the protons in cyclopropanes in the region experiencing a reduced magnetic

field 1.42.

The same explanation, although we shall not show the molecular orbitals, has been advanced to account

for the small difference in chemical shift between the axial and equatorial protons in cyclohexanes,

detectable in cyclohexane itself by freezing out at –100 �C the otherwise rapid interconversion of the two

chair conformations.46 The axial protons come into resonance upfield at d1.1 and the equatorial protons

downfield at d1.6. It is possible that the three axial C—H bonds on each side overlap in a p sense to create a

trishomoaromatic system, with a diamagnetic ring current which places the axial protons in the reduced

magnetic field 1.43, and the equatorial protons in the enhanced magnetic field 1.44.

HH

H
H

H

H

H

H
H H

HH

H

H
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field

H

1.44

H

1.42

H

1.43
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1.6.2 Cyclobutanes

It is not necessary to go through the whole exercise of setting up the molecular orbitals of cyclobutanes,

which show many of the same features as cyclopropanes, only less so. Cyclobutanes also show enhanced

reactivity over simple alkanes, but they are less reactive towards electrophiles, and cyclobutyl groups are less

effective as stabilising substituents on electron-deficient centres than cyclopropyl groups.

The most striking difference, however, is that the protons in cyclobutanes come into resonance in their
1H NMR spectra downfield of the protons from comparable methylene groups in open-chain compounds.47

The effect is not large, typically only about 0.5 ppm, with cyclobutane itself, for example, at d1.96 in

contrast to the average of the cyclohexane signals at d1.44. In a cyclobutane, four sets of C—H bonds are

conjugated, and the pattern of orbitals will be similar to those of cyclobutadiene (Fig. 1.46). Again there

will be two sets, and the top two of each set will be degenerate. The ring current is therefore in the opposite

direction, adding to the applied field at the centre of the ring, and the protons experience an enhanced field

1.45. The effect may be rather less in cyclobutanes than in cyclopropanes, because the cyclobutane ring is

flexible, allowing the ring to buckle from the planar structure 1.45, and the C—H bonds thereby avoid the

full eclipsing interactions inevitable in cyclopropanes, and compensated there by the aromaticity they

create.
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H
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field
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1.7 Heteronuclear Bonds, C—M, C—X and C=O

So far, we have been concentrating on symmetrical bonds between identical atoms (homonuclear bonds) and on

bonds between carbonand hydrogen. The important interaction diagramswereconstructed bycombiningatomic

orbitals ofmore or less equal energy, and the coefficients, c1 and c2, in the molecular orbitals were therefore more

or less equal in magnitude. It is true that C—H bonds, both in the picture without hybridisation (Fig. 1.14) and in

the picture with hybridisation (Fig. 1.20), involve the overlap of atomic orbitals of different elements, but the

difference in electronegativity, and hence in the energy of the atomic orbitals of these two elements, was not

significant at the level of discussion used in the earlier part of this chapter. In other cases where we have seen

orbitals of different energy interacting, we have either ignored the consequences, because it did not make any

significant difference to the discussion at that point, or we have deferred discussion until now. The interaction of

orbitals of different energy is inescapable when we come to consider molecules, like methyl chloride and

methyllithium, with single bonds to other elements, and molecules with double bonds to electronegative

elements like oxygen. As we have mentioned in passing, atomic orbitals of different energy interact to lower

(and raise) the energy of the resultant molecular orbitals less than orbitals of comparable energy.

1.7.1 Atomic Orbital Energies and Electronegativity

There are two standard ways of assessing the relative energies of the orbitals of different elements. One is to use

one or another of the empirical scales of electronegativity. Pauling’s, which is probably the most commonly

used, is empirically derived from the differences in dissociation energy for the molecules XX, YY and XY.

Several refinements of Pauling’s scale have been made since it first appeared in 1932, and other scales have been

suggested too. A good recent one, similar to but improving upon Pauling’s, is Allen’s,48 drawn to scale in

Fig. 1.54, along with values assigned by Mullay49 to the carbon atoms in methyl, vinyl and ethynyl groups.

In spite of the widespread use of electronegativity as a unifying concept in organic chemistry, the electro-

negativity of an element is almost never included in the periodic table. Redressing this deficiency, Allen

strikingly showed his electronegativity scale as the third dimension of the periodic table, and his vivid picture

is adapted here as Fig. 1.55.
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An alternative and more direct way of getting a feel for the relative energies of atomic orbitals is to take them

from calculations, reproduced to scale for the first and second row elements in Fig. 1.56.50 The soundness of

these energies is backed up by measurements of the ionisation potentials (IPs), which measure the energy

needed to remove an electron from the element. These calculations rank the elements in much the same order,

although with a couple of explicable anomalies, which need not concern us here. This figure separates the s and

the p orbitals, but we can easily calculate the relative energies of hybrid orbitals on any of the elements from

group three to group eighteen. The ranking of the hybrids for carbon, nitrogen, oxygen and fluorine is given in

Fig. 1.57 on the same scale and with the s and p orbital energies carried over for comparison.

The two pictures, the empirical values of Fig. 1.54 and the calculated values of Fig. 1.56, show that the

relative positions of the elements on these scales are essentially the same. However, the electronegativity

scale shows the methyl, vinyl and ethynyl groups below that for the 1s orbital on hydrogen, whereas the

atomic orbital energies place hydrogen in the middle of the range for the different kinds of carbon. This

uncertainty provides fuel for debate about which way C—H bonds are polarised, and about whether a C—H

bond or a C—C bond is the better electron donor, but the main conclusion is that the energies of the atomic

orbitals for C and H are very comparable, and the bond between them is not strongly polarised.

1.7.2 C—X s Bonds

We are now ready to construct an interaction diagram for a bond made by the overlap of atomic orbitals with

different energies. Let us take a C—Cl � bond, in which the chlorine atom is the more electronegative

element. Other things being equal, the energy of an electron in an atomic orbital on an electronegative

element is lower than that of an electron on a less electronegative element (Fig. 1.56).

As usual, we can tackle the problem with or without using the concept of hybridisation. The C—X bond in

a molecule such as methyl chloride, like the C—C bond in ethane (Fig. 1.22), has several orbitals contributing
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Fig. 1.55 Electronegativity as the third dimension of the periodic table (adapted with permission from L. C. Allen,

J. Am. Chem. Soc., 1989, 111, 9003. Copyright 1989 American Chemical Society)
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to the force which keeps the two atoms bonded to each other; but, just as we could abstract one of the

important pair of atomic orbitals of ethane and make a typical interaction diagram for it (Fig. 1.24), so can we

now take the corresponding pair of orbitals from the set making up a C—Cl � bond.

The important thing for the moment is the comparison between the C—C orbitals and the corresponding

C—Cl orbitals. What we learn about the properties of C—Cl bonds by looking at this one orbital will be the

same as we would have learned, at much greater length, from the set as a whole. Alternatively, we can use an

interaction diagram for an sp3 hybrid on carbon and an sp3 hybrid on chlorine, and compare the result with
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the corresponding interaction of two sp3 hybrids on carbon. Both pictures will be very similar, and we can

learn the same lesson from either.

In making a covalent bond between carbon and chlorine from the 2px orbital on carbon and the 3px orbital

on chlorine, we have an interaction (Fig. 1.58) between orbitals of unequal energy (–10.7 eV for C and –13.7

eV for Cl, from Fig. 1.56). The interaction diagram in Fig. 1.58 could equally have been drawn using sp3

hybrids on carbon and chlorine in place of the p orbitals. The hybrids have lower energies (–12.9 eV for

carbon and –16.6 eV for chlorine), because they have some s character, and the difference in energy between

them is greater, but the rest of the story and our conclusions will be unchanged. Alternatively we could use

Allen’s electronegativities, which effectively take the involvement of s orbitals in hybrids into account.

On account of the loss of symmetry, the chlorine atom has a larger share of the total electron population. In

other words, the coefficient on chlorine for the bonding orbital, �CCl is larger than that on carbon. It follows

from the requirement that the sum of the squares of all the c-values on any one atom in all the molecular

orbitals must equal one, that the coefficients in the corresponding antibonding orbital, �*CCl must reverse

this situation: the one on carbon will have to be larger than the one on chlorine.

What we have done in Fig. 1.58 is to take the lower-energy atomic orbital on the right and mix in with it, in

a bonding sense, some of the character of the higher-energy orbital on the left. This creates the new bonding

molecular orbital, which naturally resembles the atomic orbital nearer to it in energy more than the one

further away. We have also taken the higher-energy orbital and mixed in with it, in an antibonding sense,

some of the character of the lower-energy orbital. This produces the antibonding molecular orbital, which

more resembles the atomic orbital nearer it in energy. When the coefficients are unequal, the overlap of a

small lobe with a larger lobe does not lower the energy of the bonding molecular orbital as much as the

overlap of two atomic orbitals of more equal size. ECl in Fig. 1.58, is not as large as E� in Fig. 1.24.

Using this interaction, and others taking account of the same factors, we can set up a set of filled orbitals

for methyl chloride, represented schematically in Fig. 1.59a, along with the lowest of the unoccupied

orbitals. As with other multi-atom molecules, several orbitals contribute to C—Cl bonding, with more

bonding than antibonding from the overlap of the s orbitals, but probably nearly equal bonding and

antibonding from the orbitals having p bonding between the carbon and the chlorine. The same degree of

bonding can be arrived at by using the hybrid orbitals shown in Fig. 1.59b, where all of the C—Cl bonding

comes from the sp3 hybrids.

We might be tempted at this stage to say that we have a weaker bond than we had for a C—C bond, but we

must be careful in defining what we mean by a weaker bond in this context. Tables of bond strengths give the

C—Cl bond a strength, depending upon the rest of the structure, of something like 352 kJ mol–1 (84 kcal mol–1),

whereas a comparable C—C bond strength is a little lower at 347 kJ mol–1 (83 kcal mol–1). Only part of the

EiEC

*C—Cl
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px

C—Cl Cl

px
ECl
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Fig. 1.58 A major part of the C—Cl � bond
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C—Cl bond strength represented by these numbers comes from the purely covalent bonding given by 2ECl in

Fig. 1.58. The other part of the strength of the C—Cl bond comes from the electrostatic attraction between the

high electron population on the chlorine atom and the relatively exposed carbon nucleus.

We usually say that the bond is polarised, or that it has ionic character. This energy is related to the value Ei

in Fig. 1.58, as we can readily see by using an extreme example: suppose that the energies of the interacting

orbitals are very far apart (Fig. 1.60, where the isolated orbitals are the 3s orbital on Na and a 2p orbital on F,

with energies of –5.2 and –18.6 eV); the overlap will be negligible, and the new molecule will now have

almost entirely isolated orbitals in which the higher-energy orbital has given up its electron to the lower-

energy orbital. In other words, we shall have a pair of ions. There will be no covalent bonding to speak of, and
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the drop in energy in going from the pair of radicals to the cation plus anion is now Ei in Fig. 1.60, which, we

can see, is indeed related to Ei in Fig. 1.58.

The C—Cl bond is strong, if we try to break it homolytically to get a pair of radicals, and a comparable

C—C bond is marginally easier to break this way. This is what the numbers 352 and 347 kJ mol–1 refer to. In

other words, ECþECl in Fig. 1.58 is evidently greater than 2E� in Fig. 1.24. However, it is very much easier

to break a C—Cl bond heterolytically to the cation (on carbon) and the anion (on chlorine) than to cleave a

C—C bond this way. In other words, 2ECl in Fig. 1.58 is less than 2E� in Fig. 1.24.

The important thing to remember is that when two orbitals of unequal energy interact, the lowering in

energy is less than when two orbitals of very similar energy interact. Conversely, when it comes to

transferring an electron, the ideal situation has the electron in a high-energy orbital being delivered to the

‘hole’ in a low-energy orbital.

In a little more detail, the extent of the energy lowering ECl is a function not only of the difference in

energy Ei between the interacting orbitals, but also of the overlap integral S. The overlap integrals for

forming a C—N, a C—O or a C—F bond are essentially, at least in the region for the normal internuclear

distances and outwards, parallel to the overlap integral for the formation of a C—C bond (Figs. 1.13b and

1.23b), but displaced successively by about 0.2 Å to shorter internuclear distances for each element. This is

because the orbitals of the first-row elements have similar shapes, but the electrons are held more tightly in to

the nucleus of the more electronegative elements, and the more electronegative they are the tighter they are

held. This simply means that the atoms must be a little closer together to benefit from the overlap. We have

already seen that when orbitals of identical energy interact, the energy lowering is roughly proportional to S

(see p. 4). When they are significantly different in energy, however, it is roughly proportional to S2. They are

also, as we have seen above, inversely proportional to the energy difference Ei. The equations for the

energies of the lowered and raised orbitals in Fig. 1.58, E�CCl and E�*CCl, respectively, take the form shown in

Equations 1.13 and 1.14.

E�CCl
¼ EpCl

þ ð�CCl � EpClSCCl Þ2

EpCl–EpC

1:13

E��CCl¼ EpC
þ ð�CCl � EpCSCCl Þ2

EpC–EpCl

1:14

Clearly a full expression for the overall electronic energy is a complex one if it is to take account of the

changes between these expressions and those in Equations 1.4 and 1.5 for the energies when the interacting

orbitals are degenerate.

A picture of the electron distribution in the � orbitals between carbon and chlorine is revealed in the wire-

mesh diagrams in Fig. 1.61, which show one contour of the �CCl and �*CCl orbitals of methyl chloride.

Comparing these with the schematic version in Fig. 1.58, we can see better how the back lobe on carbon in

�CCl overlaps with the s orbitals on the hydrogen atoms, and that the front lobe in �*CCl wraps back behind

σ CCl σ *CCl

Fig. 1.61 The major C—Cl bonding orbital and the LUMO for methyl chloride
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the carbon atom to include a little overlap to the s orbitals of the hydrogen atoms. We need to remove an

oversimplification and delve a little more into detail in order to see how this comes about.

The pictures in Fig. 1.59a are shown as though the lowest-energy orbitals were made up from the

interaction only of s orbitals with each other. Likewise the next higher orbitals are made up only of the

interactions of p orbitals on the carbon and chlorine, and necessarily s orbitals on hydrogen. These

interactions are certainly the most important, and the simplification works, because the s orbitals on carbon

and chlorine are closer in energy to each other than they are to each other’s p orbitals, and vice versa, as

shown in Fig. 1.62a. However, the direct interactions of s with s and p with p are only a first-order treatment,

and a second-order treatment has to consider that the s orbital on carbon can interact quite strongly with the

px orbital on chlorine, and there will even be a small interaction from the px orbital on carbon and the s orbital

on chlorine. This complication is similar to something we saw earlier with methylene, with the allyl system

and with butadiene (Figs. 1.16. 1.32 and 1.38), where we used the device for constructing molecular orbitals,

first looking at the strong interaction of orbitals close in energy, and then modified the result by allowing for

the weaker interactions of orbitals further apart in energy. The true mixing of orbitals for methyl chloride

would still leave the lowest energy orbital looking largely like the mix of s with s, but there would be a

contribution with some p character, in inverse proportion to the energy difference between the s and p

orbitals. It is the presence of some p character in the orbitals contributing to the �*CCl orbital in Fig. 1.61 that

allows the outer counters to reach round behind the carbon atom. We saw the same feature earlier in the

picture of an sp3 hybrid (Fig. 1.19), where the cause was essentially the same—the mixing of s and p orbitals

in optimum proportions for lowering the overall energy.

The problem of identifying sensible mixes of orbitals would have been much more acute had we used

methyl fluoride instead of methyl chloride. With methyl fluoride, the 2s orbital on carbon is almost identical

in energy with the 2p orbitals on fluorine, as shown in Fig. 1.62b. The 2px orbital from that element and the 2s

orbital on carbon have the right symmetry, and their interaction would provide the single strongest

contribution to C—F bonding. Continuing from here to make a full set of the molecular orbitals for methyl

fluoride, mixing in a small contribution from the p orbital on carbon, for example, would not have made as

tidy and understandable a picture as the one for methyl chloride in Fig. 1.59. Most strikingly, the lowest-

energy orbital would be an almost pure, undisturbed s orbital on fluorine, and there would be

correspondingly little of this orbital to mix in with the others.

–19.4

–40.1

–25.3

–10.7

–18.6

–13.7

sC

sF

pC

pF

sCl

pCl

–19.4

–10.7

sC

pC

(a) Methyl chloride (b) Methyl f luoride

–19.4

–5.4

–10.7

–3.5

sC

pC

sLi

pLi

(c) Methyllithium

Fig. 1.62 Some of the major interactions contributing to C—Cl bonding for MeCl, to C—F bonding for MeF, and to

C—Li bonding for MeLi
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1.7.3 C—M s Bonds

When the bond from carbon is to a relatively electropositive element like lithium, the same problems

can arise—with methyllithium the most strongly interacting orbitals contributing to the C—Li bond

(Fig. 1.62c) are the 2s orbital on lithium and the 2px orbital on carbon. The pictorial set of molecular

orbitals therefore is not one in which you can see immediately which atomic orbitals make the major

contribution to which molecular orbitals. The interaction between a 2s orbital on lithium and a 2px

orbital on carbon has the form shown in Fig. 1.63. The energy of the lithium 2s orbital is –5.4 eV,

making the carbon atom, with a 2p orbital at –10.7 eV, the more electronegative atom. The bonding

orbital �LiC is polarised towards carbon, and the antibonding �*LiC towards lithium. Organic chemists

often refer to organolithium compounds as anions. Although there evidently is some justification for

this way of thinking, it is as well to bear in mind that they are usually highly polarised covalent

molecules. Furthermore, they are rarely monomeric, almost always existing as oligomers, in which

the lithium is coordinated to more than one carbon atom, making the molecular orbital description

below severely over-simplified

The filled and one of the unfilled orbitals for monomeric methyllithium are shown in Fig. 1.64. The lowest

energy orbital is made up largely from the 2s orbital on carbon and the 1s orbitals on hydrogen, with only a

little mixing in of the 2s orbital of lithium and even less of the 2p. The next two up in energy are largely p
mixes of the 2pz and 2py orbitals on carbon with a little of the 2pz and 2py on lithium, and, as usual, the 1s

orbitals on hydrogen. The 2pz and 2py orbitals on lithium have a zero overlap integral with the 2s orbital on

carbon, and this interaction, although between orbitals close in energy (Fig. 1.62c), makes no contribution.

Then come the two orbitals we have seen in Fig. 1.63: the 2px orbital on carbon interacting productively with

the 2s orbital on lithium, giving rise to the highest of the occupied orbitals �CLi, which has mixed in with it

the usual 1s orbitals on hydrogen and a contribution from the 2px orbital on lithium, symbolised here by the

displacement of the orbital on lithium towards the carbon. The next orbital up in energy, the lowest of the

unfilled orbitals, is its counterpart �*CLi, largely a mix of the 2s and the 2px orbital of lithium, symbolised

again by the displacement of the orbital on lithium away from the carbon, with a little of the 2px orbital of

carbon out of phase.

A picture of the electron distribution in the frontier � orbitals between carbon and lithium is revealed in the

wire-mesh diagrams in Fig. 1.65, which show one contour of the �CLi and �*CLi orbitals of methyllithium,

unrealistically monomeric and in the gas phase. Comparing these with the schematic version in Fig. 1.64, we

can see better how the s and px orbitals on lithium mix to boost the electron population between the nuclei in

�CLi, and to minimise it in �*CLi. The HOMO, �CLi, is used on the cover of this book.

*LiC

sLi

LiC

px

Li

Li

Li

Fig. 1.63 A contributory part of the Li—C � bond
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1.7.4 C=O p Bonds

Setting up the molecular orbitals of a C¼O p bond is relatively straightforward, because the p orbitals in the

p system in Hückel theory are free from the complicating effect of having to mix in contributions from

s orbitals. The px orbital on oxygen is placed in Fig. 1.66 at a level somewhat more than 1� below that of the

px orbital on carbon, although not to scale. The energy of a p orbital on oxygen is –15.9 eV and that on carbon

–10.7 eV (Fig. 1.56). As with p bonds in general, the raising of the p* and lowering of the p orbitals above

and below the atomic p orbitals is less than it was for a C—O � bond, and less than the corresponding p bond

between two carbon atoms. Both the pC¼O and the p*C¼O orbitals are now lower in energy than the pC¼C and

p*C¼C orbitals, respectively, of ethylene, which by definition are 1� above and 1� below the � level.

The polarisation of the carbonyl group is away from carbon towards oxygen in the bonding orbital,

and in the opposite direction in the antibonding orbital, as usual. The wire-mesh pictures in Fig. 1.67

show more realistically an outer contour of these two orbitals in formaldehyde, and the plots in Fig.

1.68 show the electron distribution in more detail. Note that in these pictures it appears that the p
electron population in the bonding orbital is nearly equal on oxygen and on carbon. This is not the

case, as shown by the extra contour around the oxygen atom in the plot in Fig. 1.68. The electron

HOMO C

H
H

H

Li

C

H
H

H

LiLUMO

CLi

(a) without using hybridisation (b) the sp3-hybridised orbitals of
the C—Li bond

sp3
CLi

sp3*CLi

*CLi

C
H

H

H

Li

H
H

H

Li

C

H
H

H

Li

C

H
H

H

Li

H

H

LiC

H

C

Fig. 1.64 The filled and one of the unfilled molecular orbitals of methyllithium

σ CLi σ *CLi

Fig. 1.65 The HOMO and LUMO for methyllithium
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π π*

Fig. 1.67 Wire-mesh plot of the p and p* orbitals of formaldehyde

O

O

O

C=O

1

*C=O

HOMO

pC

LUMO

pO

1

Fig. 1.66 A C¼O p bond

π π*

Fig. 1.68 Electron population contours for the p and p* orbitals of formaldehyde
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distribution around the oxygen atom is simply more compact, as a consequence of the higher nuclear

charge on that atom. This is another way in which the conventional lobes as drawn in Fig. 1.66 are

misleading.

There is no set of fundamentally sound values for � and � to use in Hückel calculations with heteroatoms.

Everything is relative and approximate. The values for energies and coefficients that come from simple

calculations on molecules with heteroatoms must be taken only as a guide and not as gospel. In simple

Hückel theory, the value of � to use in a calculation is adjusted for the element in question X from the

reference value for carbon �0 by Equation 1.15. Likewise, the � value for the C¼C bond in ethylene �0 is

adjusted for C¼X by Equation 1.16.

�X¼�0 þ hX�0 1:15

�CX¼kCX�0 1:16

The adjustment parameters h and k take into account the trends in Figs. 1.54–1.56 and the changes in the

overlap integrals for making C—X bonds discussed on p. 54, but are not quantitatively related to those

numbers. Instead, values of h for some common elements and of k for the corresponding C¼X p bonds

(Table 1.2) have been recommended for use in Equations 1.15 and 1.16.51 They are only useful to see trends.

As with single bonds to electronegative heteroatoms, it is easier to break a C¼O bond heterolytically and a

C¼C bond homolytically. Some reminders of a common pattern in chemical reactivity may perhaps bring a

sense of reality to what must seem, so far, an abstract discussion: nucleophiles readily attack a carbonyl

group but not an isolated C¼C double bond; however, radicals readily attack C¼C double bonds, and,

although they can attack carbonyl groups, they do so less readily.

1.7.5 Heterocyclic Aromatic Systems

The concept of aromaticity is not restricted to hydrocarbons. Heterocyclic systems, whether of the pyrrole

type 1.46 with trigonal nitrogen in place of one of the C¼C double bonds, or of the pyridine type 1.47 with a

Element h k Element h k

B –0.45

C 0 Si 0 0.75

N 0.51 P 0.19 0.77

N 1.37

0.73

1

1.02

0.89 P 0.75 0.76

O

C C

N

N

O
0.97 1.06

S 0.46 0.81

O O 2.09 0.66 S 1.11 0.69

F F 2.71 0.52 Cl

Si

P

P

S

S

Cl 1.48 0.62

Table 1.2 Parameters for simple Hückel calculations for p bonds with heteroatoms
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trigonal nitrogen in place of a carbon atom, are well known. The p orbitals of pyrrole are like those of the

cyclopentadienyl anion, and those of pyridine like benzene, but skewed by the presence of the electro-

negative heteroatom. The energies and coefficients of heteroatom-containing systems like these cannot be

worked out with the simple devices that work for linear and monocyclic conjugated hydrocarbons. The

numbers in Fig. 1.69 are the results of simple Hückel calculations using parameters like those in Table 1.2 for

equations like Equations 1.15 and 1.16, and some trends can be seen. The overall p energy is lowered by the

cyclic conjugation. The lowest-energy orbital  1 is always polarised towards the electronegative atom, and

the next orbital up in energy  2 (and the highest unoccupied orbital) is polarised the other way. This

polarisation is more pronounced in the pyridinium cation 1.48, where the protonated nitrogen is effectively a

more electronegative atom. In the pyridine orbitals, the HOMO is actually localised as the nonbonding lone

pair of electrons on nitrogen, and the degeneracy of 2 and 3, and of the corresponding antibonding orbitals,

is removed, but not by much. The orbitals with nodes through the heteroatoms are identical in energy and

coefficients with those of the corresponding hydrocarbon. The orbitals  3 and  5* in pyrrole, with a node

through the nitrogen atom, are identical to  2 and  4* in butadiene, and  3 and  5* in pyridine and its cation

are identical to  3 and  5* in benzene.
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Fig. 1.69 p Molecular orbitals of pyrrole, pyridine and the pyridinium ion. (Calculated using h¼1 and k¼1 for pyrrole,

h¼0.5 and k¼1 for pyridine, and h¼1 and k¼1 for the pyridinium cation)
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1.8 The Tau Bond Model

The Hückel version of molecular orbital theory, separating the � and p systems, is not the only way of

accounting for the bonding in alkenes. Pauling showed that it is possible to explain the electron distribution

in alkenes and conjugated polyenes using only sp3-hybridised carbon atoms. For ethylene, for example,

instead of having sp2-hybridised carbons involved in full � bonding, and p orbitals involved in a pure p bond,

two sp3 hybrids can overlap in something between � and p bonding 1.49. The overall distribution of electrons

in this model is exactly the same as the combination of � and p bonding in the conventional Hückel picture

(Fig. 1.25). In practice, this model, usually drawn with curved lines called t bonds 1.50,52 has found few

adherents, and the insights it gives have not proved as useful as the Hückel model. For example, the t bonds

between C-1 and C-2 and between C-3 and C-4 in butadiene 1.51 are not so obviously conjugated as the p
bonds in the Hückel picture in Fig. 1.37. It is useful, however, to recognise that it is perfectly legitimate, and

that on occasion it might have some virtues, not present in the Hückel model, especially in trying to explain

some aspects of stereochemistry.
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1.9 Spectroscopic Methods

A number of physical methods have found support in molecular orbital theory, or have provided evidence

that the deductions of molecular orbital theory have some experimental basis. Electron affinities measured

typically from polarographic reduction potentials correlate moderately well with the calculated energies of

the LUMO of conjugated systems. Ionisation potentials can be measured in a number of ways, and the results

correlate moderately well with the calculated energies of the HOMO of conjugated systems.53 Several other

measurements, like the energies of conjugated systems, bond lengths, and energy barriers to rotation, can be

explained by molecular orbital theory, and will appear in the normal course of events in the next chapter. A

few other techniques, dealt with here, have helped directly in our understanding of molecular orbital theory,

and we shall use evidence from them in the analysis of chemical structure and reactivity in later chapters.

1.9.1 Ultraviolet Spectroscopy

When light of an appropriate energy interacts with an organic compound, an electron can be promoted from a

low-lying orbital to a higher energy orbital, with the lowest-energy transition being from the HOMO to the

LUMO. Selection rules govern which transitions are allowed and which are forbidden. One rule states that

electron spin may not change, and another that the orbitals should not be orthogonal. The remaining selection rule

is based on the symmetries of the pair of orbitals involved. In most cases, the rules are too complicated to be made

simple here.54 Group theory is exceptionally powerful in identifying which transitions are allowed, and it is one of

the first applications of group theory that a chemist pursuing a more thorough understanding comes across. One

case, however, is easy—that for molecules which only have a centre of symmetry, like s-trans butadiene 1.8. The
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allowed transitions for these molecules are between orbitals that are symmetric and antisymmetric with respect to

the centre of symmetry. Thus the HOMO,  2, is symmetric with respect to the centre of symmetry half way

between C-2 and C-3, and the LUMO,  3*, is antisymmetric (Fig. 1.37). Accordingly, this transition is allowed

and is indeed strong, as is the corresponding transition for each of the longer linear polyenes.

Data for this the longest wavelength p!p* transition are available for ethylene,55 where the problem is pulling

out the true maximum from a broad band in the vacuum UV, and for a long list of the lower polyenes, where the

maximum is easy to measure in the UV region when methyl or other alkyl groups are present at the termini to

stabilise the polyenes against electrocyclisation and polymerisation. Fig. 1.70 is a plot of the experimentally

determined56 values of lmax for the longest wavelength absorption for a range of such polyenes R(CH¼CH)nR,

converted to frequency units, against (ELUMO – EHOMO) in � units calculated using Equation 1.17:

DE¼4� sin
p

2ð2nþ 1Þ 1:17

which is simply derived from the geometry of figures like Figs. 1.31 and 1.39. The correlation is astonish-

ingly good—in view of the simplifications made in Hückel theory, and in view of the fact that most

transitions, following the Frank-Condon principle, are not even between states of comparable vibrational

energy. Nevertheless, Fig. 1.70 is a reassuring indication that the simple picture we have been using is not

without foundation, and that it works quite well for relative energies. Similarly impressive correlations can

be made using aromatic systems, and even for �,�-unsaturated carbonyl systems. It is not however a good

measure of absolute energies, and the energy of the p!p* transition measured by UV cannot be used directly

as a measure of the energy difference between the HOMO and the LUMO. This can be seen from that fact

that the line in Fig. 1.70 does not go through the origin, as Hückel theory would predict, but intersects the

ordinate at 15 500 cm–1, corresponding to an energy of 185 kJ mol–1 (44 kcal mol–1).

1.9.2 Nuclear Magnetic Resonance Spectroscopy

Chemical shift is substantially determined by the electron population surrounding the nucleus in question

and shielding it from the applied field. Chemical shifts, and 13C chemical shifts in particular, are therefore

used to probe the total electron population. The chemical shift range with protons is so small that aromatic

ring currents and other anisotropic influences make such measurements using proton spectra unreliable.
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Fig. 1.70 Frequency of first p!p* transitions of some representative polyenes R(CH¼CH)nR plotted against (ELUMO –

EHOMO) calculated using Equation 1.17
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Coupling constants J measure the efficiency with which spin information from one nucleus is transmitted

to another. This is not usually mediated through space, but by interaction with the electrons in intervening

orbitals. Transmission of information about the magnetic orientation of one nucleus to another is dependent

upon how well the orbitals containing those electrons overlap, as well as by the number of intervening

orbitals. In a crude approximation, the number of intervening orbital interactions affects both the sign and the

magnitude of the coupling constant.

Coupling constants can be either positive or negative. Although this does not affect the appearance of the 1H-

NMR spectrum, it does change the way in which structural variations affect the magnitude of the coupling

constant. To understand why coupling constants can be positive or negative, we need to look into the energetics

of coupling. In hydrogen itself, H2, there are three arrangements with different energies: the lowest energy with

the nuclear spins of both nuclei H and H0 aligned, the highest with both opposed, and in between two ways equal

in energy with the alignments opposite to each other (Fig. 1.71a, where upward-pointing arrows indicate nuclear

magnets in their low-energy orientation with respect to the applied magnetic field, downward-pointing arrows

indicate nuclear magnets in their high-energy orientation with respect to the magnetic field, and levels of higher

energy are indicated by vertical upward displacement). The transitions which the instrument measures are those

in which the alignment of one of the nuclei changes from the N� state (the high-energy orientation, aligned with

the applied magnetic field) to the N� state (the low-energy orientation, aligned in opposition to the applied

magnetic field). There are four such transitions labelled W in Fig. 1.71a, and all of them equal in magnitude. The

receiving coils detect only the one signal, and the spectrum shows one line and hence no apparent coupling.

If now we look at two different atoms A and X, we have the same set-up, but this time the two energy levels in

the middle are of different energy, one with A aligned and the other with X aligned (Fig. 1.71b). ‘A’ might be

a 13C, and ‘X’ a 1H atom, but the general picture is the same for all AX systems. If there is no coupling

(J¼ 0), as when the nuclei are far apart, the A�X� energy level will be as much above the mid-point as the

energy level for the A�X� nucleus is below it. There will again be four transitions, two equal for the A

nucleus, labelled WA, and two equal for the X nucleus, labelled WX, giving rise to one line from each.

If, however, the two nuclei are directly bonded, they will affect each other. The A spin will be opposed to

the spin of one of the intervening electrons in an s orbital (only s orbitals have an electron population at the

nucleus); that electron is paired with the other bonding s electron. In the lowest energy arrangement of the

system, both the A and X nuclei are spin-paired with the bonding electrons with which they interact most

strongly (as in Fig. 1.72c). As a result, the A and the X nuclei will be opposed in the lowest energy

arrangement. Conversely, the system will be higher in energy when these spins are aligned. Thus, the two

energy levels in which the A and X nuclei have parallel spins will be raised and the two energy levels in

which they are opposed will be lowered (Fig. 1.72b). Thus, there are now four new energy levels, four

different transitions, WA1 and WA2, and WX1 and WX2, and four lines in the AX spectrum. The A signal is a

H H'

H H' H H'

H H'

W 1 W 1'

W 2' W 2

A X

A X

A X

A X

W A1
W X1

W X2
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delpuoctonX—A)b('H—H)a(

Fig. 1.71 Energy levels of atomic nuclei showing no coupling
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doublet and the X signal is a doublet, with the same separation between the lines, because (WA1 –

WA2)¼ (WX1 – WX2)¼ JAX. Thus, the extent of the raising and lowering of each of the energy levels is

JAX/4. More complicated versions of this kind of diagram, more complicated than can be explained here, are

needed to analyse spin interactions for nuclei with values of I 6¼ ½, for systems more complicated than AX,

and even more complicated ones to make sense of those spectra that are not first order.

If instead of being directly bonded, the A and X nuclei are separated by two bonds, the transmission of

information through the s electrons leads the two nuclei to be parallel in the low-energy arrangement, in

contrast to the high-energy arrangement of Fig. 1.72. The model that illustrates this point is given in

Fig. 1.73c, and implies that the nuclei will be antiparallel in the high-energy arrangement. Now the energy

levels will have the lowest and highest energy levels lowered by the interaction of the two spins, and the

levels in between raised (Fig. 1.73b). If the coupling constant is the same as that in Fig. 1.72, the two

transitions for the A nucleus, WA1 and WA2, are of the same magnitude as before but have changed places,

and similarly for WX1 and WX2. The appearance of the spectrum will not have changed, but the coupling

constant J is negative in sign. In general, although not always, one-bond couplings 1J and three-bond

couplings 3J are positive in sign, and two- and four-bond couplings 2J and 4J are negative in sign.

The connection between spin-spin coupling and orbital involvement can be found in several familiar

situations. Thus, the 1J values for 1H—13C coupling are correlated with the degree of s character at carbon

1.52–1.54. More subtly the 1H—13C coupling constant is a measure of the C—H bond length, with the axial

protons in cyclohexanes having a slightly smaller value (122 Hz) than the equatorial protons (126 Hz),57 a

phenomenon known as the Perlin effect.58 The explanation is found in the hyperconjugation of the anti-

periplanar axial-to-axial C—H bonds on neighbouring atoms (see p. 85). The coupling between geminal
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protons is negative but larger in absolute magnitude when both C—H bonds are conjugated to the same p
bond 1.55 than when they are not 1.56.

H

H

H
H

H HH

H

H

H
1J 125 Hz 1J 156 Hz 1J 249 Hz

1.52 1.53
1.54

H

H
H
H

H

H
H

2J –14.9 Hz

65.155.1

2J –12 Hz

Strong coupling from anti-periplanar and syn-coplanar vicinal hydrogen atoms 1.57 and 1.59, and virtually

zero coupling with orthogonal C—H bonds 1.58 (the Karplus equation), is a consequence of the conjugation

of the bonds with each other.59 Coupling constants are usually larger when the intervening bond is a p bond,

with the trans and cis 3J coupling in alkenes typically 15 and 10 Hz for the same 180� and 0� dihedral angles.

Longer-range coupling is most noticeable when one or more of the intervening bonds is a p bond, most

strikingly demonstrated by 5J values as high as 8–10 Hz in 1,4-cyclohexadienes 1.60. When there are no p
bonds, the strongest long range coupling is found when the intervening � bonds are oriented and held rigidly

for efficient conjugation with 4J W-coupling 1.61 and 1.62.

H

H

H H H
H

1.58

3J ~10 Hz

H

Ph

H

H

95.175.1

26.116.1

H

H

1.60

3J 9-13 Hz

3J ~0 Hz

H

H
5J 9 Hz

4J 1-2 Hz
5J 1-1.5 Hz

1.9.3 Photoelectron Spectroscopy

Photoelectron spectroscopy60 (PES) measures, in a rather direct way, the energies of filled orbitals, and

overcomes the problem that UV spectroscopy does not give good absolute values for the energies of

molecular orbitals. The values obtained by this technique for the energies of the HOMO of some simple

molecules are collected in Table 1.3. Here we can see how the change from a simple double bond (entry 6) to

a conjugated double bond (entry 10) raises the energy of the HOMO. Similarly, we can see how the change

from a simple carbonyl group (entry 8) to an amide (entry 14) also raises the HOMO energy, just as it ought

to, by analogy with the allyl anion (Fig. 1.33), with which an amide is isoelectronic. We can also see that the

interaction between a C¼C bond (p energy –10.5 eV) and a C¼O bond (p energy –14.1 eV) gives rise to a

HOMO of lower energy (–10.9 eV, entry 16) than when two C¼C bonds are conjugated (–9.1 eV, entry 10).

Finally, we can see that the more electronegative an atom, the lower is the energy of its HOMO (entries

1 to 5). All these observations confirm that the theoretical treatment we have been using, and will be

extending in the following chapters, is supported by some experimental evidence.
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1.9.4 Electron Spin Resonance Spectroscopy

A final technique which both confirms some of our deductions and provides useful quantitative data for frontier

orbital analysis is ESR spectroscopy.61 This technique detects the odd electron in radicals; the interaction of the

spin of the electron with the magnetic nuclei (1H, 13C, etc.) gives rise to splitting of the resonance signal, and

the degree of splitting is proportional to the electron population at the nucleus. Since we already know that the

coefficients of the atomic orbitals, c, are directly related to the electron population, we can expect there to be a

simple relationship between these coefficients and the observed coupling constants. This proves to be quite a

good approximation. The nucleus most often used is 1H, and the coefficient of the atomic orbital which is

measured in this way is that on the carbon atom to which the hydrogen atom in question is bonded.

The McConnell equation (Equation 1.18) expresses the relationship of the observed coupling constant

(aH) to the unpaired spin population on the adjacent carbon atom (�C) The constant Q is different from one

situation to another, but when an electron in a pz orbital on a trigonal carbon atom couples to an adjacent

hydrogen, it is about –24 G. Applied to aromatic hydrocarbons, where it is particularly easy to generate

radical cations and anions, there proves to be a good correlation between coupling constants and the

calculated coefficients in the HOMO and LUMO, respectively.62

aH ¼ QH
CH�C 1:18

Entry Molecule Type of orbital Energy (eV)

1 n –9.9
2 n –10.48
3 n –10.85
4 n –12.6
5 n –12.8
6 π –10.51
7 π –11.4
8 n –10.88
9 π –14.09

10 2 ψ2 –9.1
11 ψ1 –11.4 or –12.2
12 ψ2 –10.17
13 n –10.13
14 π –10.5
15 n –10.1
16 π –10.9
17 π –8.9

18 π –9.25

19

:PH3

:SH2

:NH3

:OH2

:ClH
CH2=CH2

HC≡CH
:O=CH2

CH2=CH-CH=CH

HC≡C-C≡CH
H2NCH=O:

CH2=CH-CH=O

O

N

π –9.3

20 n –10.5

Table 1.3 Energies of HOMOs of some simple molecules from PES (1 eV¼ 96.5 kJ

mol–1¼ 23 kcal mol–1)
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However, the relationship between coupling constant and electron population is not quite as simple as this. Thus,

although p orbitals on carbon have zero electron population at the nucleus, coupling is nevertheless observed;

similarly, in the allyl radical 1.63, which ought to have zero odd-electron population at the central carbon atom,

coupling to a neighbouring hydrogen nucleus is again observed. This latter coupling turns out to be opposite in

sign to the usual coupling, and hence has given rise to the concept of ‘negative spin density’. Nevertheless the

technique has provided some evidence that our deductions about the coefficients of certain molecular orbitals

have some basis in fact as well as in theory: the allyl radical does have most of its odd-electron population at C-l

and C-3; and several other examples will come up later in this book. We merely have to remember to be cautious

with evidence of this kind; at the very least, the observation of negative spin density should remind us that the

Hückel theory of conjugated systems (the theory we have been using) is a simplification of the truth.

The standard ways of generating radicals for ESR measurements involve adding an electron to a molecule

or taking one away. In the former case the odd electron is fed into what was the LUMO, and in the latter case

the odd electron is left in the HOMO. Since these are the orbitals which appear to be the most important in

determining chemical reactivity, it is particularly fortunate that ESR spectroscopy should occasionally give

us access to their coefficients.

Here is a selection of some of the more important conjugated radicals and radical ions, to some of which

we shall refer in later chapters. They all show how the patterns of molecular orbitals deduced in this chapter

are supported by ESR measurements. The numbers are the coupling constants |aH| in gauss.

HH

H H

H
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4.1
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H 3.75 CH3

H

O
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H
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H

H

H

H

H

H

H

H

H

0.8

5.1

5.5

0.6

6.7

1.9

10.2

16.4

5.1

1.8

6.1

3.5

1.1

3.9

1.64 1.65

H3C CH3 CH3

CH3

H

H

H

5.1

1.5

7.7

6.9

1.8

2.0

H

H

6.91.66

1.67 1.68 1.69 1.70

H

H

H

H

5.3

1.8

5.0

1.9

H6.5

1.5H

H H5.3

H

H

1.4

47.137.127.117.1

7.21.3
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