A Quantum Ruler for Natural Molecules

  • ChemPubSoc Europe Logo
  • Author: Angewandte Chemie International Edition (Picture: Christian Knobloch, QNP Group, Faculty of Physics, University of Vienna)
  • Published Date: 01 September 2017
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: A Quantum Ruler for Natural Molecules

Quantum physics suggests that isolated molecules can propagate through space in a wave-like manner, extending a hundred times wider than the molecules themselves. Under certain conditions, this effect produces a periodic density pattern of molecules with a period as tiny as 266 nm.

Using quantum-interference-assisted metrology (the science of measurement), Markus Arndt, University of Vienna, Austria, and colleagues have detected shifts in the periodic density patterns of vaporized pro-vitamin A (β-carotene), vitamin E (α-tocopherol), and vitamin K1 (phylloquinone) exposed to an external electric field. This allowed the researchers to measure electronic properties of these molecules.


Static electric polarizabilities and the time-averaged effect of fluctuating electric dipole moments were determined. The team was also able to extract optical polarizabilities from changes to the amplitude of the fringe pattern caused by interactions between molecules and an intense laser light field at 532 nm.


The experimental data compares well with density functional theory (DFT) calculations averaged over the conformational space, which was scanned with molecular dynamics (MD) simulations. These findings provide the first illustration of the electronic structure and dynamics of vitamins A, E, and K1 in the gas phase.


 

Article Views: 595

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH