A recent Research Highlight on ChemistryViews.org on the nature of the Periodic Table of the Elements attracted a lot of readers and has stimulated an ongoing debate among those arguing as to whether or not there is a definitive format for this iconic tool. Intriguingly, however, the article and ensuing discussion has also spawned a development in this field courtesy of UCLA chemistry professor Eric Scerri.
"One of the most positive outcomes of the very popular 'Periodic Debate' discussion has been that the relative virtues of the so-called 'Stowe' and the 'left-step' periodic table, in various formats, have been vigorously discussed," Scerri says. "In the course of this debate I have come up with a compromise table which includes the best features of both types of systems."
The Stowe table is named for Tim Stowe who published his system on a website several years ago but has, apparently, published nothing since. Chemists have attempted to track him down, but he seems to have vanished from the community without a trace, leaving behind an interesting periodic legacy. "Many people interested in the periodic table have tried to track him down," says Scerri, "but nobody has yet succeeded."
Stowe’s system is four dimensional in the following sense: the x and y axes depict values of the m and s quantum numbers. In the case of the s or spin quantum number values are either positive or negative, while the values of the m quantum number can range from -l, through 0 up to +l in integer steps. The z-axis is taken as the n or main quantum number representing the main shell. The fourth dimension, which obviously cannot be depicted spatially, is shown by the use of different colors each of which denotes a different value of the l quantum number. In this way, the Stowe table seeks to depict the four quantum numbers of the electron that differentiates each atom from the previous one in the sequence of increasing atomic numbers.
However, the Stowe representation has several drawbacks, which is where Scerri's new approach comes to the fore. The left-step table has received a great deal of attention in recent years. It was originally designed by the French engineer and polymath Charles Janet in the 1920s. However, with the advent of quantum mechanics and the quantum mechanical account of the periodic system it was realized that his system displays the elements in order of increasing n + l values of the differentiating electron. Many authors have claimed that this is a more natural system since electron filling accords with this criterion rather than increasing values of n.
Scerri has now modified the left-step table by combining it with Stowe’s idea of using the quantum numbers explicitly to represent the elements in the periodic system. "The notion that n + l is more fundamental than n alone is key," says Scerri. "The format I have now constructed depicts the arrangement of the elements in this fashion for elements 1 to 65 inclusive and can be easily extended up to 118 the currently heaviest atom and indeed beyond to elements that will in all probability be
synthesized soon." In what he now calls the Stowe-Janet-Scerri periodic system each level represents a particular value of n + l which take the form of horizontal periods in the case of the original Janet table.
Following Scerri's introduction of this new layout in the comments of the ChemistryViews item, commenter Valery Tsimmerman, pointed out that Scerri's efforts in re-working the Stowe table is bringing us closer to the realization of the numerical and geometrical regularities of the Periodic System. Tsimmerman also claims to have devised the perfect Periodic Table based on the concept of tetrahedral sphere packing.
Tsimmerman points out that chemists such as Henry Bent mentioned that every other alkaline earth atomic number equals to four times the pyramidal number, while Wolfgang Pauli noticed that length of periods are double square numbers: 2x(1, 4, 9, 16). This latter point is, Tsimmerman says, not surprising because square numbers are the sums of odd numbers 1, 1+3, 1+3+5, 1+3+5+7 ... We know the meaning of odd numbers in the periodic system. They are the lengths of s, p, d and f blocks. Adding the number of elements in block rows results in the lengths of the periods. Adding square numbers results in pyramidal numbers: 1, 1+4=5, 1+4+9=14, 1+4+9+16=30. Multiply them by four and you will get every other tetrahedral number 4, 20, 56, 120 ... Those are the atomic numbers of Be, Ca, Ba and Ubn. "Great scientists like Pauli, Niels Bohr and others were marveling at numerical relationships found in periodic system," says Tsimmerman. He suggests that Scerri's latest periodic table is not quite the final version and suggests that any further reworking of Stowe's table will take us closer to a definitive 3D table.
"I hope that this system will not be just another periodic table to add to the depository of tables that people dream up every so often but may represent a definitive step forward in the quest for improved periodic tables," Scerri told us.
Article Views: 49752
5 Comments
E. Garcia wrote:
Program for mining atomic number sequences
Here is another program we developed for building new tools on top of it and for mining atomic number sequences. It is not just for reproducing Janet PT atomic number sequences. The program itself was inspired in Tsimmerman's framework. It is available here.
Tue Dec 01 17:27:04 UTC 2015
E. Garcia wrote:
Adomah Periodic Table
Hi, there. I just want to mention something about the benefits of learning new periodic table arrangements/versions. Tsimmerman and Janet periodic tables inspired me to build a tool for easy calculation of electron configurations. It is freely accessible here.
Dr. E. Garcia
Thu Nov 19 15:47:39 UTC 2015
J Gregory Moxness wrote:
An interactive 4D visualization of the Stowe-Janet-Scerri Periodic Table
Please see
http://theoryofeverything.org/MyToE/?p=1099For full interactivity, you will need the free Wolfram CDF Mathematica player.
Wed May 01 13:23:31 UTC 2013
Eric Scerri wrote:
new periodic table blog
http://blogs.nature.com/soapbox_science/2011/12/07/the-periodic-table-matter-matters ericscerri.com/
Wed Dec 07 18:23:12 UTC 2011
Jess Tauber wrote:
Fiblike Silver Ratio-related sequences
Well, I worked out the first few number series whose contiguous members give Silver Ratio values. So at least these do exist. This makes me wonder whether Pascal Triangle-like figures exist for the Silver Ratio (1+squareroot2) also. If so, then are there diagonals? Anything relevant to the Periodic System?
Fri Oct 28 17:06:17 UTC 2011
Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.