Pore Tuning for Ethylene Separation

  • ChemPubSoc Europe Logo
  • Author: Theresa Kueckmann
  • Published Date: 10 April 2014
  • Source / Publisher: Chemistry - An Asian Journal / Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Pore Tuning for Ethylene Separation

To achieve efficient ethylene/ethane gas separation with porous materials, Keisuke Kishida, Showa Denko K.K., Tokyo, Japan, Susumu Kitagawa, Kyoto University, and their co-workers investigated porous coordination polymers, also known as metal–organic frameworks, of zinc with dicarboxylate and dipyridyl ligands.

They evaluated the gas sorption properties of four pillared-layer-type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n (1), [Zn2(fm)2(bpe)]n (2), [Zn2(fm)2(bpa)]n (3), and [Zn2(fm)2(bpy)]n (4) (tp = terephthalate, bpy = 4,4′-bipyridyl, fm = fumarate, bpe = 1,2-di(4-pyridyl)ethylene, and bpa = 1,2-di(4-pyridyl)ethane).
Different ligands yielded materials with different pore sizes. All compounds showed entangled, jungle-gym-like structures. The compound with optimal pore size (4) could adsorb 4.6 times more ethylene than ethane from a binary mixture of the two gases. Repeated adsorption–desorption studies revealed that the coordination polymer could be fully regenerated by gentle depressurization due its structural flexibility, while a conventional zeolite could not.


This work illustrates the advantage of flexible porous coordination polymers over traditional adsorbents in the field of gas separation, as well as a strategy of material design.


Article Views: 4026

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH