DNA in Glass

  • ChemPubSoc Europe Logo
  • Author: Angewandte Chemie International Edition
  • Published Date: 09 February 2015
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: DNA in Glass


Long-Term Storage of Digital Information in DNA

It is evident from samples from mammoths, bears, and other fossils: sequenceable DNA can last up to several hundred thousand years. But one does not necessarily need fossil bones as capsules of silica glass spheres can do the same job, as Robert N. Grass and colleagues from the ETH Zurich demonstrate in their Communication in Angewandte Chemie.


In recent years, there have been several approaches using DNA as a coding language to encode digital information. "However, those approaches are not reliable as they cannot handle errors efficiently and do not suggest how to (physically) store the DNA to maintain its stability over time", Grass and his colleagues explain. Therefore, they combined an error-correcting coding scheme with chemically embedding the synthesized DNA strands in capsules of silica. Releasing the DNA was performed by simple fluoride chemistry, after which it was sequenced and decoded. "The corresponding experiments show that only by the combination of the two concepts could digital information be recovered from DNA stored at the Global Seed Vault (at –18 °C) after over 1 million years", the researchers explain.


Silica Glass Spheres Protect DNA

In order to simulate various environmental conditions and to compare different storage technologies, the scientists exposed samples of either pure solid-state DNA, DNA on filter cards, in a biopolymeric matrix, or encapsulated in silica spheres to conditions of elevated temperature (60 – 70 °C) or various humidity levels for a total time of four weeks. Within this time, the state of the DNA was checked in terms of integrity. Encapsulation in silica performed best, and extrapolation revealed that DNA stored by this technology would be sequenced and decoded error-free even after 1 million of years, if stored at temperatures that are found in permafrost.


To demonstrate the applicability of the method to storage of relevant information, the scientists chose two old documents as examples, the Swiss Federal Charter from 1291 and the English translation of the ancient Archimedes Palimpsest on "The Methods of Mechanical Theorems". Pairs of letters of the text file (or generally two bytes of a digital file, as the authors emphasize) were translated in elements of three to eventually obtain sequences of 158 nucleotides. These nucleotides combine the original information with an index as well as elements of redundancy required for Reed–Solomon error correction. Nature stores genetic information to ensure evolution. Humans store information to pass on knowledge. For storage times as long as one million years, it could be reasonable to use DNA as a storage medium.


 

Article Views: 2492

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH