Expanding Catalysis with Ship-in-a-Bottle Nanoreactors

  • ChemPubSoc Europe Logo
  • Author: Claire D'Andola
  • Published Date: 06 August 2015
  • Source / Publisher: Chemistry – A European Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Expanding Catalysis with Ship-in-a-Bottle Nanoreactors

Related Societies

Hybrid structures composed of nanosized components encapsulated in matrix materials have drawn considerable attention in the past few years. One particularly promising type of these nanostructures known under different names, yolk-shell, core@shell, nanorattle, or ship-in-a-bottle nanoreactors (NRs), consists of metal nanoparticles (NPs) confined within shells or voids of organic or inorganic material.


To date, many different reactions have been catalyzed by NRs, including reductions, oxidations, and halogenation. However, for the vast majority of reported NRs, size selectivity remains a challenge and is often achieved at the expense of the diffusion rate or the conversion of substrates due to the thickness of the shells.


Eugene Pinkhassik and collaegues, University of Connecticut, Mansfield, USA, have tackled this problem by constructing yolk-shell nanoreactors with metal nanoparticle cores (Au and Pt) and ultrathin porous polymer shells. These single-nanometer porous polymer shells were prepared by vesicle-templated directed assembly and provide size selectivity and improved reusability of the catalyst. The newly formed NRs were then utilized in the oxidation of benzyl alcohol and benzaldehyde (Au NRs) and hydrogenation of cyclohexene (Pt NRs).


Comparison of the NRs with commercially available nanoparticles revealed superior reusability and size selectivity in the NRs without a compromise on the reaction kinetics. Considering the straightforward control of size and chemical environment of the nanopores in these NRs, it is anticipated that these materials will be expanded to different types of catalysts and catalytic processes.


 

Article Views: 2198

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH