Improved Anticorrosion Graphene Coating

  • Author: ChemistryViews.org
  • Published: 01 January 2018
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
  • Source / Publisher: Advanced Materials/Wiley-VCH
thumbnail image: Improved Anticorrosion Graphene Coating

Metal corrosion is an important and often costly problem in many branches of industry. Standard anticorrosion coatings need to be relatively thick. Graphene, in contrast, could prevent oxygen and water from reaching a metal surface with only a negligible coating thickness. However, it is semi-metallic and could even accelerate electrochemical corrosion by forming a circuit with the metal. These two contradictory properties need to be better understood to develop useful graphene coatings for metals.


Ying Jiang and Kaihui Liu, Peking University and Collaborative Innovation Centre of Quantum Matter, both Beijing, China, Feng Ding, Institute for Basic Science and Ulsan National Institute of Science and Technology (UNIST), both Ulsan, Republic of Korea, and colleagues have studied graphene-coated copper using corrosion experiments, scanning tunnelling microscopy (STM), and scanning tunnelling spectroscopy (STS). The team compared graphene-coated copper(111) surfaces (pictured left, in green) and graphene-coated copper(100) surfaces (pictured right, in green) using these methods.


The researchers found that both surfaces can be protected from O2 by graphene. However, only Cu(111) surfaces are protected from corrosion in the presence of water, while Cu(100) surfaces are heavily oxidized under water vapor. The team attributes this difference to the interactions between graphene and the copper surfaces: While the graphene lattice is well aligned with Cu(111) (pictured left), it does not match the structure of Cu(100) surface (pictured right). This causes creases in the graphene layer that allow H2O diffusion to the metal surface. According to the researchers, these insights could allow the use of graphene for large-scale and long-term anticorrosion applications by applying it to suitable metal surfaces.


 

Article Views: 810

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH