Mimicking Human Skin with Nickel Nanoparticles

  • Author: Melania Tesio
  • Published: 29 November 2012
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Source / Publisher: Nature Nanotechnology/Nature Publishing Group
thumbnail image: Mimicking Human Skin with Nickel Nanoparticles

The human skin senses mechanical stimuli, such as touch and pressure, in the form of electrical nerve impulses. Moreover, it regenerates itself following injury. Ideally, when creating a synthetic skin, these features have to be reproduced using flexible, electrically conductive and self-healing materials. Combining these properties is, however, challenging as the present self-healing materials do not conduct electricity.


Benjamin Tee and colleagues, Stanford University, USA, report a way around this issue. By incorporating chemically compatible nickel nanoparticles into a supramolecular organic polymer, the researchers created a novel composite which combines the self-healing properties of the organic polymer with the high electrical conductivity of metal nanoparticles. Thanks to this strategy, the scientists obtained the first flexible conductive material that mimics human skin’s properties: It could sense pressure and self-heal itself after being repetitively damaged.

This material has, therefore, important applications in the field of bio-prosthetics.


Article Views: 1338

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on facebook

ChemistryViews.org on twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for free newsletter



A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH