Frontiers of Chemistry - Virtual Event

  • Author: ChemViews
  • Published: 05 May 2010
  • Source/Publisher: ChemViews/Wiley
  • Copyright: John Wiley & Sons, Inc.
  • Associated Societies: ChemPubSoc Europe

Watch ten prestigious chemists, including four Nobel laureates, presenting in Paris on Friday 21st May at the Wiley "Frontiers of Chemistry" event.

Registration is free.

The videos are not available anymore. See pictures of the event.

Additional Information

Gerhard Ertl – Reactions at Surfaces: From Atoms to Complexity

Nobel Prize for Chemistry in 2007

Prof. Dr. Gerhard Ertl, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany, illustrates by selected examples how it can be shown in atomic detail that the interactions of molecules with solid surfaces form the basis of important technological applications such as heterogeneous catalysis.

Gerhard Ertl—表面反应:从原子到复杂性

德国柏林“马克斯普朗克应用技术研究院弗里茨•哈伯学院(Fritz-Haber-Institut der Max-Planck-Gesellschaft)”的Gerhard Ertl教授通过选定的范例阐明如何以最明细的数据说明分子与固体表面的相互作用可形成重要技术应用的基础,如多相催化。

Michel Orrit – Nano-Optics: A Window on Structure and Dynamics at Molecular Scales

Compared to electron microscopy and scanning probe microscopy, the optical selection of individual molecules or nanoparticles in a far-field microscope has distinct advantages. Prof. Dr. Michel Orrit, Molecular Nano-Optics and Spins Leiden Institute of Physics, Leiden University, The Netherlands, illustrates the applications of single-molecule optics to dynamics with recent topics from his group.
Michel Orrit —纳米光学:分子量级的结构和动力学窗口
与电子显微镜和扫描探针显微镜相比,远场显微镜的单个分子或纳米粒子的光学选择具有明显优势。荷兰“莱顿大学(Leiden University)”莱顿物理研究所(Leiden Institute of Physics)分子纳米光学和旋转课题组(Molecular Nano-Optics and Spins)的Michel Orrit教授用其研究小组的最新课题阐明了单分子光学在动力学中的运用。

Marc Fontecave – From Enzymes to Nanocatalysts: The Case of Hydrogenases

Viable renewable-energy systems will require new catalysts made from earth-abundant materials that are cheap and robust. Prof. Dr. Marc Fontecave, Laboratoire de Chimie et Biologie des Metaux, Universite Joseph Fourier Grenoble, and College de France, Paris, France, describes his bioinspired strategy, which aims to reproduce hydrogenase active sites, and has lead to remarkable cobalt- and nickel-based (photo)catalysts for hydrogen production.
Marc Fontecave—从酶到纳米催化剂:氢化酶实例
可行的可再生能源系统需要用地球蕴藏丰富的、廉价而坚固的材料制成的新型催化剂。法国巴黎“格勒诺布尔第一大学(Universite Joseph Fourier Grenoble)”法兰西学院(College de France)金属化学与生物学实验室(Laboratoire de Chimie et Biologie des Metaux)的Marc Fontecave教授描述了其生物启发的策略,该策略旨在复制氢化酶活性部位且已经生成大量制氢的钴基和镍基(光)催化剂。

Alan R. Fersht – The Tumour Suppressor p53: From Structure to Drug Discovery

Mutation directly inactivates the tumor suppressor p53 in some 50 % of human cancers. Prof. Dr. Sir Alan R. Fersht FRS, Cambridge University and MRC Centre for Protein Engineering, Cambridge, UK, shows in principle that it is possible to reactivate p53 by small molecules that bind to and stabilize it. To understand further the structure of the protein and hence the rational design of drugs, its structure is solved at high resolution.
Alan R. Fersht —肿瘤抑制基因p53:从结构到药物开发
突变直接使人体50%肿瘤的肿瘤抑制基因p53失去活性。英国皇家学会会员、剑桥大学(Cambridge University)及“英国医学研究理事会蛋白质工程中心(MRC, Centre for Protein Engineering)的Alan R. Fersht教授原则上表明通过附着在其上并使其稳定的小分子可以激活p53。为进一步理解蛋白质结构以及药物的合理设计,以高分辨率对其结构进行分析。

Michael Grätzel – Molecular Photovoltaics and Mesoscopic Solar Cells

The development of tools to control materials on the nanometer scale has catalyzed the development of a new class of solar-energy-conversion devices. The prototype of this is the dye-sensitized solar cell (DSC). Prof. Dr. Michael Grätzel, Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, Lausanne, Switzerland, describes the mechanism of operation of the DSC, illustrates the benefits of the meso structure used, and highlights some of the recent advances and challenges to be overcome with this technology.
Michael Grätzel —分子光电和介观太阳能电池
对以毫微米级控制材料的工具开发促进了新型太阳能转换设备的开发。此设备的原型是染料敏化太阳能电池(DSC)。瑞士洛桑市“苏黎世联邦理工学院(Swiss Federal Institute of Technology)光子学与接口实验室(Laboratory for Photonics and Interfaces)”的Michael Grätzel教授描述了染料敏化太阳能电池(DSC)的运作机制,阐明了所使用的细观结构的优势并强调了该技术的最新进展以及需克服的难题。

Nicolas Winssinger – Translating Instructions into Function by Self-Assembly

The programmable nature of nucleic acid hybridization has inspired a number of applications beyond their natural function in heredity. Prof. Dr. Nicolas Winssinger, Institut de Science et d'Ingénierie Supramoleculaires (ISIS), Université de Strasbourg – CNRS, France, presents several applications from his laboratory to program the self-assembly of small molecules into microarrays, template chemical reactions, or display multimeric ligands.
Nicolas Winssinger—通过自组装将指令转化为功能
核酸杂交的可编程特性已经激发了许多超越其遗传的自然功能的运用。法国“斯特拉斯堡大学 – 国家科学研究中心(Université de Strasbourg – CNRS)”超分子科学与工程研究所(Institut de Science et d'Ingénierie Supramoleculaires, ISIS)的Nicolas Winssinger教授展示了其实验室的几个运用,将小分子的自组装编程到芯片、模板化学反应或显示多聚配体。

Roger Y. Tsien – Breeding and Building Molecules to Spy on Cells and Tumors
Nobel Prize for Chemistry in 2008

Autofluorescent proteins have revolutionized molecular and cell biology, although they have major limitations, such as irreducible size and optical spatial resolution. To circumvent these, Prof. Dr. Roger Y. Tsien, Howard Hughes Medical Institute and Department of Pharmacology, George Palade Laboratories, University of California, San Diego, La Jolla, CA, USA, is developing genetically encoded tags for electron microscopy. Autofluorescent proteins are also of limited use in human patients, because humans are too opaque for most applications of fluorescence. Tsien reports on synthetic molecules with novel amplifying mechanisms for homing in on diseased tissues.
Roger Y. Tsien —分子育种及建构监视细胞和肿瘤
虽然自发荧光蛋白质有一些主要的局限性,如不可缩小尺寸和光学空间分辨率,它们仍拥有彻底改变的分子和细胞生物。为避免这些局限,美国加州拉荷亚圣地亚哥“加利福尼亚大学(University of California)”霍华德休斯医学研究所乔治帕拉德实验室(George Palade Laboratories, Howard Hughes Medical Institute)的Roger Y. Tsien教授正在开发用于电子显微镜的遗传基因编码标签。自发荧光蛋白质在人类患者的运用同样很有限,因为人类对于大部分荧光应用来说太不透明了。Tsien教授就为使病变组织归巢而具备新型放大机制的合成分子作了阐述。

Luisa De Cola – Nanomaterials: Properties, Assemblies and Biomedical Applications

The creation of molecular (nano)containers – crystalline or amorphous, rigid or soft – is a fascinating field at the cross point of different disciplines. Prof. Dr. Luisa De Cola, Westfälische Wilhelms-Universität and CeNTech, Münster, Germany, focuses on the synthesis and use of crystalline materials, zeolites L, which are transparent, stiff, nanocontainers. She talks about hosting materials that possess a photo- and electroactive framework and introduces molecular luminescent noncovalent linked porous materials as a new possible scaffold for sensing.
Luisa De Cola—纳米材料:属性、组件及生物医学应用
分子(纳米)容器的创造—结晶的或无定形的、刚性或软质—是一个吸引人的、不同学科交叉点的领域。德国明斯特“威斯特伐利亚•威姆斯大学(Westfälische Wilhelms-Universität)”的“纳米技术中心(CeNTech)”的 Luisa De Cola教授集中研究晶体材料“L型沸石”,一种透明且硬的纳米容器的合成和用途。她谈到拥有光和电活性结构的基质材料,并引入分子冷光非共价键连接的多孔材料作为传感的一种新型支架。

Ada Yonath – The Ribosome: The Remnant of an Ancient RNA Apparatus
Nobel Prize for Chemistry in 2009

Ribosomes are the universal cellular machines that produce proteins according to the genetic code instructions. Using structural methods, supported by comprehensive mutagenesis experiments and quantum mechanical calculations, Prof. Dr. Ada Yonath, Department of Structural Biology, Weizmann Institute, Rehovot, Israel, has identified in all contemporary ribosomes an internal architectural element that might represent the ancient version of an RNA machine capable of forming peptide bonds.
Ada Yonath—核糖体:古老核糖核酸机的遗迹

核糖体是根据基因遗传密码指令产生蛋白质的万能细胞机。以色列雷霍沃特“魏兹曼研究所(Weizmann Institute)”结构生物学系(Department of Structural Biology)的Ada Yonath教授利用结构方法,通过全面诱变实验和量子力学计算支持,已在所有当代核糖体中识别出可能代表能够形成肽键的核糖核酸机古老版本的内部构架元素。

Jean-Marie Lehn – Perspectives in Chemistry: From Supramolecular Chemistry towards Adaptive Chemistry
Nobel Prize for Chemistry in 1987

The spontaneous but controlled generation of well-defined, functional molecular and supramolecular architectures of nanometric size through self-organization represents a means of performing programmed engineering and processing of functional nanostructures. It offers a powerful alternative to nanofabrication and to nanomanipulation for the development of nanotechnology. Prof. Dr. Jean-Marie Lehn, ISIS, Université de Strasbourg, and Collège de France, Paris, France, describes applications of this approach in biological systems as well as in materials science.
Jean-Marie Lehn—化学观点:从超分子化学到自适应化学

完整功能分子的自发并可控生成以及通过自组织的毫微米尺寸超分子构架代表一种履行程控工程并处理功能纳米结构的方法。它为纳米技术的发展提供了一种纳米制造及纳米操控技术的有力选择。法国巴黎“斯特拉斯堡大学(Université de Strasbourg)”超分子科学与工程研究所(ISIS)及“法兰西学院(Collège de France)”的Jean-Marie Lehn教授描述了该方法在生物系统以及材料科学中的运用。

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in


Kochu Sankar Gopalakrishnan wrote:

Good Presentation

Mike , To give you feedback, very good presentation and could easily locate it in the Web.-Regards- Kochu

Tue Aug 24 13:18:29 UTC 2010

Bookmark and Share

If you would like to reuse any content, in print or online, from, please contact us first for permission. more

CONNECT: on Facebook on Twitter on YouTube on LinkedIn Sign up for our free newsletter

A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH