Light Switch in Autumn Leaves

  • Author: Angewandte Chemie International Edition
  • Published Date: 28 November 2016
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Light Switch in Autumn Leaves

Phyllobilins, Chlorophyll Decomposition Product

Before trees lose their leaves in the winter, they offer us a bright autumnal display of reds, oranges, and yellows. This results from the decomposition of the compound that makes leaves green: chlorophyll. Among the decomposition products are yellow phyllobilins that demonstrate unusual chemical properties. As reported by Austrian scientists in the journal Angewandte Chemie, these compounds act as four-step molecular “switches” that are triggered by light in different ways depending on the environment.

During the summer, green leaves use their chlorophyll to convert sunlight into chemical energy. Before they lose their leaves in the cold season, trees reclaim important nutrients like nitrogen and minerals. “The chlorophyll released in this process must be broken down because it has a damaging effect on the tree when it is irradiated by light while unbound,” explains Bernhard Kräutler. “Presumably, the chlorophyll decomposition products play a physiological role as well.”


Yellow Chlorophylls are Environment-responsive Photoswitches

The decomposition of chlorophyll leads to the formation of phyllobilins. Most of these are colorless, but in leaves there are also yellow ones, known as phylloxanthobilins. Researchers working with Kräutler at the Universities of Innsbruck and Graz, Austria, and Columbia University, New York, USA, have demonstrated that these compounds act as unique four-stage “switches” that react to light (photoswitches). The molecular environment determines which “switching mechanism” is used.

In polar media, such as the aqueous environment inside a cell, phylloxanthobilins are found as simple molecules. When irradiated with light, they switch reversibly between two forms that have slightly different spatial structures around one double bond (Z/E-isomerization). This is similar to important plant photoswitches. In nonpolar media and presumably in cellular membrane systems, the Z-isomers pair up and are held together by hydrogen bonds. Irradiation with light leads to a chemical reaction between the two paired molecules. In this cycloaddition, the paired molecules are bound together into a dimer through a ring made of four carbon atoms. Slight heating reverses this process.

“By using X-ray crystallographic analysis, we were able to determine the precise spatial arrangement (stereostructure) of a phylloxanthobilins and the hydrogen-bonded pair structure they adopt when crystallized,” reports Kräutler. “The fascinating chemistry of these substances also suggests that phyllobilins may have important, unknown physiological roles, possibly in the photoregulation of plants. Our new insights will help to elucidate this role.”

Article Views: 1832

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

If you would like to reuse any content, in print or online, from, please contact us first for permission and consult our permission guidance prior to making your request

Follow on Facebook Follow on Twitter Follow on YouTube Follow on LinkedIn Follow on Instagram RSS Sign up for newsletters

Magazine of Chemistry Europe (16 European Chemical Societies) published by Wiley-VCH