Halide-Binding Rotaxanes

  • ChemPubSoc Europe Logo
  • Author: Joseph D. Unsay
  • Published Date: 07 May 2017
  • Source / Publisher: Chemistry – A European Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
thumbnail image: Halide-Binding Rotaxanes

Related Societies

Mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes have progressed from compounds of aesthetic interest and curiosity to an active area of contemporary chemical research, with applications in nanotechnology, drug delivery, catalysis, materials science, and molecular recognition.


Paul Beer, University of Oxford, UK, and colleagues synthesized a family of neutral [2]rotaxanes containing the halogen-binding (XB) donor group iodotriazole, which was integrated into the macrocycle and axle components using an active-metal template synthetic strategy. The team attached 2 XB donor groups either meta- or ortho-positioned to each other on a phenyl ring spacer in the macrocycle, but none to the axle. Using NMR spectroscopy, they showed that the meta-arranged molecules can bind anions (Cl, Br, I, and SO42) more strongly than the ortho isomer. Donor group flexibility and steric hindrance may play a role in the anion binding affinity of these MIMs.


Using the same macrocycle, the researchers then added a third and fourth XB donor groups in the axle (example pictured) and showed increased halogen binding for both MIMs. However, non-spherical anions such as sulfates, azides, acetates, or nitrates did not bind to the molecule with four XB groups, which are thus selective towards halogens. This study opens up new possibilities for the design and preparation of elaborate XB-interlocked receptors capable of strong anion binding for various analytical and nanotechnological applications.


 

Article Views: 1590

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH