Customizable 3D-Printed Microelectrodes

  • ChemPubSoc Europe Logo
  • Author: Angewandte Chemie International Edition
  • Published Date: 17 October 2018
  • Source / Publisher: Angewandte Chemie International Edition/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Customizable 3D-Printed Microelectrodes

Implantable carbon microelectrodes allow the rapid detection of neurotransmitters in the brain. There are different fabrication strategies for such microsensors, but it is still challenging to customize their sizes and shapes.


B. Jill Venton, University of Virginia, Charlottesville, USA, and colleagues have fabricated 3D-printed, freestanding carbon microelectrodes in different shapes. Direct laser writing, a nano-3D-printing technique, was used to shape a photopolymer on a tiny metal wire into the desired electrode shape, e.g., a sphere or a cone. After the shaping process, the polymer was pyrolyzed to give the carbon electrodes. The laser writing method provides a sub‐micron resolution and, thus, can produce custom designs down to the sub‐micron scale.


The 3D-printed microelectrodes showed promising electrochemical properties. They were successfully implanted into rat brains to detect the release of the neurotransmitter dopamine. According to the researchers, the method is promising for batch‐manufacturing customized sensors with rationally designed shapes and sizes for different applications.


 

Article Views: 597

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH