Nanotubes for Efficient Photocatalytic Water Splitting

  • ChemPubSoc Europe Logo
  • Author: Chemistry – An Asian Journal
  • Published Date: 24 October 2018
  • Source / Publisher: Chemistry – An Asian Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Nanotubes for Efficient Photocatalytic Water Splitting

Graphitic carbon nitride (g-CN) is considered a very promising photocatalyst for hydrogen generation. This is due to its unique electronic band structure, good chemical stability, eco-friendliness, and reasonable cost. However, it usually has a low surface area. For further improving the catalytic activity, multilevel and hierarchical nanostructuring of g‐CN is highly desirable to effectively expose active sites and facilitate separation and migration of photoexciteded charge carriers.


Qing Han, Liangti Qu, and colleagues, Beijing Institute of Technology, China, have prepared wall-mesoporous graphitic carbon nitride nanotubes (g-CNNTs, pictured) which can be used as photocatalysts. The synthesis involved the annealing of urea microrod arrays, which were formed using a vertical gradient freeze growth (VGFG) method.


The hierarchical g-CNNTs have a high photocatalytic H2 production rate of 8789 μmol h–1 g–1, with an excellent apparent quantum yield of 6.3 % under visible light irradiation. The material provides long-term cycling stability and outperforms previously reported g-CN tubes and most nanostructured g-CN photocatalysts.


The team attributes the high photocatalytic activity to the mesoporous surface nanotube structure of g-CNNTs, which provides many bonding sites and ensures a sufficient contact area between the catalyst and the reactants, and to the 1D structure that is favorable for the transport of photogenerated electrons, which, in turn, inhibits charge recombination.


 

Article Views: 725

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH