Cytochrome P450 Enzyme for C–H Bond Functionalization

  • ChemPubSoc Europe Logo
  • Author: ChemBioChem
  • Published Date: 31 January 2019
  • Source / Publisher: ChemBioChem/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Cytochrome P450 Enzyme for C–H Bond Functionalization

Related Societies

Cytochrome P450 enzymes (P450s) catalyze various reactions, transforming an extraordinarily broad range of substrates in a regio- and stereospecific manner. The best-known reaction of these enzymes is the hydroxylation of inert C–H bonds, which is synthetically challenging. As such, P450s are promising for chemical synthesis. However, P450s that catalyze both aliphatic and aromatic hydroxylation are rare.


Yousong Ding, University of Florida, Gainesville, USA, and colleagues have found that one P450, called TxtC, can sequentially catalyze aliphatic and aromatic hydroxylations in the biosynthesis of the bacterial natural products thaxtomins (pictured), which have a diketopiperazine (DKP) core. Coupled with two other thaxtomin biosynthetic enzymes, the team used TxtC for the synthesis of over 40 hydroxylated thaxtomin-like compounds. This demonstrates the big substrate promiscuity of the enzyme.


The researchers further synthesized several hydroxylated thaxtomin-unlike compounds by combining the engineered TxtC with enzymes from other bacteria and an engineered human enzyme. According to the team, their work could pave the way for future engineering of TxtC for broader synthetic applications.


 

Article Views: 757

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH