Smart Nanodrug Combats Resistance

  • ChemPubSoc Europe Logo
  • Author: Chemistry – A European Journal
  • Published Date: 09 March 2019
  • Source / Publisher: Chemistry – A European Journal/Wiley-VCH
  • Copyright: Wiley-VCH Verlag GmbH & Co. KGaA
thumbnail image: Smart Nanodrug Combats Resistance

Related Societies

Nanodrugs for anticancer treatment can be stopped by a series of physiological barriers before achieving their intended therapeutic effect. Weihong Tan, Hunan University, China, Shanghai Jiao Tong University, China, and University of Florida, Gainesville, USA, and colleagues have developed a size-controllable and transformable "stealth" nanodrug based on multiple host-guest interactions.


The nanodrug is prepared by assembling three modules: First, a poly(amidoamine) (PAMAM) dendrimer is loaded with the anticancer drug doxorubicin (Dox). Secondly, the dendrimer is coated with adamantane (Ad)-modified chimera peptides, which consist of nuclear location peptides (NLS) and matrix metalloproteinase-2 (MMP-2)-responsive peptides. Finally, a β-cyclodextrin polymer and Ad-modified CD47 peptides are added. CD-47 acts as a "don't eat me" signal to macrophages of the immune system. The final smart nanodrug forms by self-assembly.


The nanodrug can efficiently overcome multiple biological barriers. When it is near a tumor (pictured), the hybrid drug disassembles into smaller components (DOX/PAMAM‐NLS), which enter the tumor cells. This disassembly is caused by a reaction to MMP-2, which has a higher concentration near tumors. The nanodrug, thus, successfully overcomes drug resistance. This study provides a promising strategy for designing smart and efficient nanodrugs to treat cancers.


 

Article Views: 1138

Sign in Area

Please sign in below

Additional Sign In options

Please note that to comment on an article you must be registered and logged in.
Registration is for free, you may already be registered to receive, e.g., the newsletter. When you register on this website, please ensure you view our terms and conditions. All comments are subject to moderation.

Article Comments - To add a comment please sign in

Bookmark and Share

If you would like to reuse any content, in print or online, from ChemistryViews.org, please contact us first for permission. more


CONNECT:

ChemistryViews.org on Facebook

ChemistryViews.org on Twitter ChemistryViews.org on YouTube ChemistryViews.org on LinkedIn Sign up for our free newsletter


A product of ChemPubSoc Europe (16 European Chemical Societies)and Wiley-VCH